This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352268 #13 Mar 10 2022 17:33:03 %S A352268 55,155,505,515,550,551,1055,1155,1505,1515,1550,1551,2555,5005,5015, %T A352268 5050,5051,5105,5115,5150,5151,5255,5500,5501,5510,5511,5525,5552, %U A352268 10055,10155,10505,10515,10550,10551,11055,11155,11505,11515,11550,11551,12555,15005,15015,15050 %N A352268 Integers that need 10 iterations of the map x->A352172(x) to reach 1. %e A352268 55 -> 15625 -> 27000000 -> 2744 -> 11239424 -> 5159780352 -> 54010152000000000 -> 8000000 -> 512 -> 1000 -> 1. %t A352268 f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[15050], q[#, 10] &] (* _Amiram Eldar_, Mar 10 2022 *) %o A352268 (PARI) f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172 %o A352268 isok10(n) = {for (k=1, 10, n = f(n); if ((n==1), return(k==10)););} %o A352268 (Python) %o A352268 from math import prod %o A352268 def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0') %o A352268 def ok(x, iters=10): %o A352268 i = 0 %o A352268 while i < iters and x != 1: i, x = i+1, A352172(x) %o A352268 return i == iters and x == 1 %o A352268 print([k for k in range(15051) if ok(k)]) # _Michael S. Branicky_, Mar 10 2022 %Y A352268 Cf. A352172. Subsequence of A351876. %Y A352268 Cf. A352260, A352261, A352262, A352263, A352264, A352265, A352266, A352267. %K A352268 nonn,base %O A352268 1,1 %A A352268 _Michel Marcus_, Mar 10 2022