cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352270 Expansion of e.g.f. 1/(2 - exp(x) + log(1 - x)).

This page as a plain text file.
%I A352270 #16 Mar 11 2022 08:32:11
%S A352270 1,2,10,75,751,9405,141361,2478959,49683047,1120216645,28064294201,
%T A352270 773391141325,23250533411821,757231705088131,26558855360366239,
%U A352270 998051946325525971,40006049065833007891,1703833370634756077097,76833773059665726636621
%N A352270 Expansion of e.g.f. 1/(2 - exp(x) + log(1 - x)).
%H A352270 Seiichi Manyama, <a href="/A352270/b352270.txt">Table of n, a(n) for n = 0..390</a>
%F A352270 a(0) = 1; a(n) = Sum_{k=1..n} ((k-1)! + 1) * binomial(n,k) * a(n-k).
%o A352270 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)+log(1-x))))
%o A352270 (PARI) a(n) = if(n==0, 1, sum(k=1, n, ((k-1)!+1)*binomial(n, k)*a(n-k)));
%Y A352270 Cf. A000670, A352139, A352146, A352271.
%K A352270 nonn
%O A352270 0,2
%A A352270 _Seiichi Manyama_, Mar 10 2022