cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352271 Expansion of e.g.f. 1/(2 - exp(x) - log(1 + x)).

This page as a plain text file.
%I A352271 #12 Mar 10 2022 10:54:37
%S A352271 1,2,8,51,427,4485,56461,829619,13929175,263120293,5522411441,
%T A352271 127497249825,3211140897757,87615489275587,2574463431688695,
%U A352271 81050546853002151,2721785052811891411,97113737702073060713,3668859532725782696709,146306156466305491481253
%N A352271 Expansion of e.g.f. 1/(2 - exp(x) - log(1 + x)).
%F A352271 a(0) = 1; a(n) = Sum_{k=1..n} ((-1)^(k-1) * (k-1)! + 1) * binomial(n,k) * a(n-k).
%o A352271 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-log(1+x))))
%o A352271 (PARI) a(n) = if(n==0, 1, sum(k=1, n, ((-1)^(k-1)*(k-1)!+1)*binomial(n, k)*a(n-k)));
%Y A352271 Cf. A000670, A007840, A352147, A352270.
%K A352271 nonn
%O A352271 0,2
%A A352271 _Seiichi Manyama_, Mar 10 2022