This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352289 #20 Sep 11 2024 13:36:40 %S A352289 1,4,14,86,886,13766,298154,8455786,300427382,12942000398, %T A352289 659492202274,38995629272042,2634767648759954,200877694833442486, %U A352289 17101872791349773894,1611548301646589127698,166820830882144877428234 %N A352289 a(1) = 1 and thereafter a(n) = 2*prime(a(n-1)). %C A352289 In Matula-Goebel tree codes, a(n) is a rooted caterpillar consisting of a path of n-1 internal vertices down, and n childless vertices under them so each has exactly 2 children. %C A352289 Mir, Rosselló, and Rotger show that among phylogenic trees (meaning series-reduced, no vertex with just 1 child) with n childless vertices, tree a(n) has the largest total cophenetic index A352288(a(n)) = binomial(n,3). %H A352289 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A352289.py">Python program</a>. %H A352289 Arnau Mir, Francesc Rosselló, and Lucía Rotger, <a href="http://arxiv.org/abs/1202.1223">A New Balance Index for Phylogenetic Trees</a>, arXiv:1202.1223 [q-bio.PE], 2012. %e A352289 For n=3, a(3) = 14 is the Matula-Goebel code of the following tree %e A352289 root 14 %e A352289 / \ tree numbers of subtrees shown, %e A352289 4 1 with "1" being childless, %e A352289 / \ and n=3 of those %e A352289 1 1 %t A352289 NestList[2 Prime[#] &, 1, 10] (* _Michael De Vlieger_, Apr 18 2022 *) %o A352289 (PARI) a(n) = my(ret=1); for(i=2,n, ret=2*prime(ret)); ret; %o A352289 (Python) %o A352289 from functools import lru_cache %o A352289 from sympy import prime %o A352289 @lru_cache(maxsize=None) %o A352289 def A352289(n): return 1 if n == 1 else 2*prime(A352289(n-1)) # _Chai Wah Wu_, Apr 18 2022 %Y A352289 Cf. A352288 (total cophenetic index). %Y A352289 Cf. A331937. %K A352289 nonn,more,hard %O A352289 1,2 %A A352289 _Kevin Ryde_, Mar 16 2022 %E A352289 a(10)-a(15) from _Daniel Suteu_, Mar 19 2022 %E A352289 a(16) and a(17) from _Lucas A. Brown_, Sep 04 2024