This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352296 #11 Mar 20 2022 12:15:17 %S A352296 1,4,10,22,34,48,60,78,84,90,114,144,120,168,180,234,246,288,240,210, %T A352296 324,300,360,474,330,528,576,390,462,480,420,570,510,672,792,756,876, %U A352296 714,798,690,1038,630,1008,930,780,960,870,924,900,1134,1434,840,990,1302 %N A352296 Smallest number that can be expressed as the sum of two primes in exactly n ways or -1 if no such number exists. %C A352296 Conjecture: a(n) != -1 for all n. %C A352296 If n > 0 and a(n) != -1, then a(n) is even. %C A352296 a(0) = A014092(1) %C A352296 a(1) = A067187(1) %C A352296 a(2) = A067188(1) %C A352296 a(3) = A067189(1) %C A352296 a(4) = A067190(1) %C A352296 a(5) = A067191(1) %C A352296 a(6) = A066722(1) %C A352296 a(7) = A352229(1) %C A352296 a(8) = A352230(1) %C A352296 a(9) = A352231(1) %C A352296 a(10) = A352233(1) %t A352296 f[n_] := Count[IntegerPartitions[n, {2}], _?(And @@ PrimeQ[#] &)]; seq[max_] := Module[{s = Table[0, {max}], n = 1, c = 0, k}, While[c < max, k = f[n]; If[k < max && s[[k + 1]] == 0, c++; s[[k + 1]] = n]; n++]; s]; seq[50] (* _Amiram Eldar_, Mar 11 2022 *) %o A352296 (Python) %o A352296 from itertools import count %o A352296 from sympy import nextprime %o A352296 def A352296(n): %o A352296 if n == 0: %o A352296 return 1 %o A352296 pset, plist, pmax = {2}, [2], 4 %o A352296 for m in count(2): %o A352296 if m > pmax: %o A352296 plist.append(nextprime(plist[-1])) %o A352296 pset.add(plist[-1]) %o A352296 pmax = plist[-1]+2 %o A352296 c = 0 %o A352296 for p in plist: %o A352296 if 2*p > m: %o A352296 break %o A352296 if m - p in pset: %o A352296 c += 1 %o A352296 if c == n: %o A352296 return m %Y A352296 Cf. A014092, A067187, A067188, A067189, A067190, A067191, A066722, A352229, A352230, A352231, A352233. %Y A352296 Essentially the same as A023036 and A001172. %K A352296 nonn %O A352296 0,2 %A A352296 _Chai Wah Wu_, Mar 11 2022