This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352311 #18 Aug 21 2024 11:23:26 %S A352311 1,-1,1,-1,2,-11,61,-281,1191,-5923,41791,-354091,2968021,-24059751, %T A352311 204718515,-1996937671,22125450621,-258434553861,3056858429581, %U A352311 -37181421375349,482010195953821,-6741275765687821,99663246605243861,-1521712424934601901 %N A352311 Expansion of e.g.f. 1/(exp(x) - x^4/24). %F A352311 a(n) = binomial(n,4) * a(n-4) - Sum_{k=1..n} binomial(n,k) * a(n-k) for n > 3. %F A352311 a(n) ~ n! * 3*(-1)^n / ((1 + LambertW(3^(1/4) / 2^(5/4))) * 2^(2*n + 7) * LambertW(3^(1/4) / 2^(5/4))^(n+4)). - _Vaclav Kotesovec_, Mar 12 2022 %F A352311 a(n) = n! * Sum_{k=0..floor(n/4)} (-k-1)^(n-4*k)/(24^k*(n-4*k)!). - _Seiichi Manyama_, Aug 21 2024 %t A352311 m = 23; Range[0, m]! * CoefficientList[Series[1/(Exp[x] - x^4/24), {x, 0, m}], x] (* _Amiram Eldar_, Mar 12 2022 *) %o A352311 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(exp(x)-x^4/24))) %o A352311 (PARI) b(n, m) = if(n==0, 1, sum(k=1, n, (-1+(k==m))*binomial(n, k)*b(n-k, m))); %o A352311 a(n) = b(n, 4); %Y A352311 Cf. A089148, A352309, A352310. %Y A352311 Cf. A352304. %K A352311 sign %O A352311 0,5 %A A352311 _Seiichi Manyama_, Mar 11 2022