This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352312 #14 Mar 15 2022 14:42:03 %S A352312 7,223,37253,2,2575723,7533777323,277535577223,5323733533375237, %T A352312 57552737757357223 %N A352312 Start of the first run of exactly n consecutive primes using only prime digits. %C A352312 This is a variant of A343471. %H A352312 Chris K. Caldwell and G. L. Honaker, Jr., <a href="https://primes.utm.edu/curios/page.php?curio_id=41445">Prime Curios! 277535577223</a>. %e A352312 a(1) = 7 because it is the first prime using only prime digits and whose next prime 11 does not use only prime digits. %e A352312 a(3) = 37253 because 37253, 37273, 37277 is the first run of 3 consecutive primes using only prime digits, then next prime 37307 has a digit 0. %o A352312 (Python) %o A352312 from sympy import nextprime, isprime %o A352312 from itertools import count, islice, product %o A352312 def onlypd(n): return set(str(n)) <= set("2357") %o A352312 def agen(): %o A352312 adict, n = {1:7, 4:2}, 1 %o A352312 yield 7 %o A352312 for digits in count(2): %o A352312 for p in product("2357", repeat=digits-1): %o A352312 for end in "37": %o A352312 t0 = t = int("".join(p) + end) %o A352312 run = 0 %o A352312 while isprime(t): %o A352312 run += 1 %o A352312 t = nextprime(t) %o A352312 if not onlypd(t): break %o A352312 if run not in adict: %o A352312 adict[run] = t0 %o A352312 if run > n: %o A352312 for r in range(n+1, run+1): %o A352312 if r in adict: %o A352312 yield adict[r] %o A352312 n += 1 %o A352312 print(list(islice(agen(), 6))) # _Michael S. Branicky_, Mar 11 2022 %Y A352312 Cf. A082755, A343471. %Y A352312 Subsequence of A019546. %K A352312 nonn,base,more %O A352312 1,1 %A A352312 _Bernard Schott_, Mar 11 2022 %E A352312 a(9) from _Michael S. Branicky_, Mar 15 2022