cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352319 Numbers whose minimal (or greedy) Pell representation (A317204) is palindromic.

Original entry on oeis.org

0, 1, 3, 6, 8, 13, 20, 30, 35, 40, 44, 49, 71, 88, 102, 119, 170, 182, 194, 204, 216, 238, 242, 254, 266, 276, 288, 409, 450, 484, 525, 559, 580, 621, 655, 696, 986, 1015, 1044, 1068, 1097, 1150, 1160, 1189, 1218, 1242, 1271, 1334, 1363, 1392, 1396, 1425, 1454
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

A052937(n) = A000129(n+1)+1 is a term for n>0, since its minimal Pell representation is 10...01 with n-1 0's between two 1's.
A048739 is a subsequence since these are repunit numbers in the minimal Pell representation.
A001109 is a subsequence. The minimal Pell representation of A001109(n), for n>1, is 1010...01, with n-1 0's interleaved with n 1's.

Examples

			The first 10 terms are:
   n  a(n)  A317204(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     3             11
   4     6            101
   5     8            111
   6    13           1001
   7    20           1111
   8    30          10001
   9    35          10101
  10    40          10201
		

Crossrefs

Subsequences: A001109, A048739, A052937 \ {2}.

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; PalindromeQ[IntegerDigits[Total[3^(s - 1)], 3]]]; Select[Range[0, 1500], q]