This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352320 #12 Mar 14 2022 02:42:43 %S A352320 1,2,4,5,6,9,10,12,14,15,18,20,24,28,29,30,33,34,36,39,40,42,44,48,50, %T A352320 58,60,63,64,68,70,72,82,84,87,88,90,92,96,110,111,112,115,116,120, %U A352320 125,126,135,140,141,144,155,164,165,168,169,170,174,180,183,184,186 %N A352320 Pell-Niven numbers: numbers that are divisible by the sum of the digits in their minimal (or greedy) representation in terms of the Pell numbers (A317204). %C A352320 Numbers k such that A265744(k) | k. %C A352320 All the positive Pell numbers (A000129) are terms. %H A352320 Amiram Eldar, <a href="/A352320/b352320.txt">Table of n, a(n) for n = 1..10000</a> %e A352320 6 is a term since its minimal Pell representation, A317204(6) = 101, has A265744(6) = 2 1's and 6 is divisible by 2. %t A352320 pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[200], q] %Y A352320 Cf. A000129, A265744, A317204. %Y A352320 Subsequences: A352321, A352322. %Y A352320 Similar sequences: A005349, A049445, A064150, A064438, A064481, A118363, A328208, A328212, A331085, A333426, A342726, A334308, A331728, A342426, A344341, A351714, A351719, A352089, A352107. %K A352320 nonn,base %O A352320 1,2 %A A352320 _Amiram Eldar_, Mar 12 2022