A352321 Numbers k such that k and k+1 are both Pell-Niven numbers (A352320).
1, 4, 5, 9, 14, 28, 29, 33, 39, 63, 87, 110, 111, 115, 125, 140, 164, 168, 169, 183, 255, 275, 308, 338, 410, 444, 483, 507, 564, 579, 584, 704, 791, 984, 985, 999, 1004, 1024, 1025, 1115, 1134, 1154, 1164, 1211, 1265, 1308, 1323, 1351, 1395, 1415, 1424, 1491
Offset: 1
Examples
4 is a term since 4 and 5 are both Pell-Niven numbers: the minimal Pell representation of 4, A317204(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, and the minimal Pell representation of 5, A317204(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[1500], q[#] && q[#+1] &]
Comments