cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352328 Nonnegative numbers that are the sum of distinct Pell numbers (A000129).

This page as a plain text file.
%I A352328 #15 Jan 05 2025 19:51:42
%S A352328 0,1,2,3,5,6,7,8,12,13,14,15,17,18,19,20,29,30,31,32,34,35,36,37,41,
%T A352328 42,43,44,46,47,48,49,70,71,72,73,75,76,77,78,82,83,84,85,87,88,89,90,
%U A352328 99,100,101,102,104,105,106,107,111,112,113,114,116,117,118
%N A352328 Nonnegative numbers that are the sum of distinct Pell numbers (A000129).
%C A352328 This sequence is the complement of A352323.
%C A352328 Although this is a list, it has offset 0 for mathematical reasons: indeed, so, the binary expansion of n encodes the positive Pell numbers summing to a(n).
%C A352328 Every nonnegative integer is the sum of two (not necessarily distinct) terms of this sequence.
%H A352328 L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/10-5/carlitz1.pdf">Pellian Representations</a>, The Fibonacci Quarterly, Vol. 10, No. 5 (1972), pp. 449-488.
%H A352328 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A352328 a(n) = Sum_{k >= 0} b_k * A000129(k+1) where Sum_{k >= 0} b_k * 2^k is the binary expansion of n.
%F A352328 A265744(a(n)) = A000120(n).
%e A352328 For n = 42:
%e A352328 - 42 = 2^5 + 2^3 + 2^1,
%e A352328 - so a(42) = A000129(5+1) + A000129(3+1) + A000129(1+1) = 70 + 12 + 2 = 84.
%t A352328 With[{pell = LinearRecurrence[{2, 1}, {1, 2}, 7]}, Select[Union[Plus @@@ Subsets[pell]], # <= pell[[-1]] &]] (* _Amiram Eldar_, Mar 12 2022 *)
%o A352328 (PARI) a(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=([2, 1; 1, 0]^(k+1))[2, 1]); return (v) }
%Y A352328 Cf. A000120, A000129, A265744, A352323.
%K A352328 nonn,base
%O A352328 0,3
%A A352328 _Rémy Sigrist_, Mar 12 2022