This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352329 #39 Apr 13 2022 07:44:02 %S A352329 1,13527684,34857216,65318724,73256481,81432576,139854276,152843769, %T A352329 157326849,215384976,245893761,254817369,326597184,361874529, %U A352329 375468129,382945761,385297641,412739856,523814769,529874361,537219684,549386721,587432169,589324176,597362481,615387249 %N A352329 Squares in A030299. %C A352329 Conjecture: there are infinitely many terms. %D A352329 John D. Dixon and Brian Mortimer, Permutation groups. Graduate Texts in Mathematics, 163. Springer-Verlag, New York, 1996. xii+346 pp. ISBN: 0-387-94599-7 MR1409812 (98m:20003). %H A352329 Chai Wah Wu, <a href="/A352329/b352329.txt">Table of n, a(n) for n = 1..3185</a> %o A352329 (Python) %o A352329 from itertools import permutations %o A352329 def pmap(s, m): return sum(s[i-1]*10**(m-i) for i in range(1, len(s)+1)) %o A352329 def agen(): %o A352329 m = 1 %o A352329 while True: %o A352329 for s in permutations(range(1, m+1)): yield pmap(s, m) %o A352329 m += 1 %o A352329 def aupton(terms): %o A352329 alst, g = [], agen() %o A352329 while len(alst) < terms: alst += [next(g)] %o A352329 return alst %o A352329 def is_perfect_square(n): %o A352329 return round(n ** 0.5) ** 2 == n %o A352329 print([x for x in aupton(5000000) if is_perfect_square(x)]) %o A352329 (Python) %o A352329 from itertools import count, islice, permutations %o A352329 from sympy import integer_nthroot %o A352329 def A352329_gen(): # generator of terms %o A352329 for l in count(1): %o A352329 if (r := l*(l+1)//2 % 9) == 0 or r == 1 or r == 4 or r == 7: %o A352329 m = tuple(10**(l-i-1) for i in range(l)) %o A352329 for p in permutations(range(1,l+1)): %o A352329 if integer_nthroot(n := sum(prod(k) for k in zip(m,p)),2)[1]: %o A352329 yield n %o A352329 A352329_list = list(islice(A352329_gen(),10)) # _Chai Wah Wu_, Mar 21-22 2022 %Y A352329 Cf. A030299, A240763. %K A352329 nonn,base %O A352329 1,2 %A A352329 _Luca Onnis_ and _Marco RipĂ _, Mar 12 2022