cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352340 a(n) is the sum of digits of n in the maximal Pell representation of n (A352339).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 4, 5, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 5, 6, 4, 5, 6, 4, 5, 5, 6, 7, 5, 6, 6, 7, 8, 4, 5, 5, 6, 4, 5, 6, 4, 5, 5, 6, 7, 5, 6, 6, 7, 5, 6, 7, 5, 6, 6, 7, 8, 6, 7, 7, 8, 9, 5, 6, 6, 7, 5, 6, 7, 5, 6, 6, 7, 8, 6, 7, 7, 8, 6
Offset: 0

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; a[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]

Formula

a(n) = A007953(A352339(n)).
a(n) >= A265744(n).