This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352342 #8 Mar 14 2022 02:41:57 %S A352342 1,2,4,9,12,15,20,24,25,28,30,35,40,48,50,54,56,60,63,64,70,72,78,84, %T A352342 88,91,96,102,115,120,136,144,160,162,168,180,182,184,189,207,209,210, %U A352342 216,217,234,246,256,261,270,304,306,308,315,320,328,333,350,352,357 %N A352342 Lazy-Pell-Niven numbers: numbers that are divisible by the sum of the digits in their maximal (or lazy) representation in terms of the Pell numbers (A352339). %C A352342 Numbers k such that A352340(k) | k. %H A352342 Amiram Eldar, <a href="/A352342/b352342.txt">Table of n, a(n) for n = 1..10000</a> %e A352342 4 is a term since its maximal Pell representation, A352339(4) = 11, has the sum of digits A352340(4) = 1+1 = 2 and 4 is divisible by 2. %t A352342 pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; q[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[300], q] %Y A352342 Cf. A352339, A352340. %Y A352342 Subsequences: A352343, A352344, A352345. %Y A352342 Similar sequences: A005349, A049445, A064150, A064438, A064481, A118363, A328208, A328212, A331085, A333426, A342726, A334308, A331728, A342426, A344341, A351714, A351719, A352089, A352107, A352320. %K A352342 nonn,base %O A352342 1,2 %A A352342 _Amiram Eldar_, Mar 12 2022