This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352344 #11 Mar 14 2022 02:41:41 %S A352344 2196,2650,5784,17459,28950,57134,112878,124506,147078,162809,169694, %T A352344 191538,210494,218654,223344,223459,230894,239360,258740,277455, %U A352344 278900,285615,289695,291328,291858,295408,311524,314658,324734,332894,335179,341900,347718,362880 %N A352344 Starts of runs of 3 consecutive lazy-Pell-Niven numbers (A352342). %H A352344 Amiram Eldar, <a href="/A352344/b352344.txt">Table of n, a(n) for n = 1..10000</a> %e A352344 2196 is a term since 2196, 2197 and 2198 are all divisible by the sum of the digits in their maximal Pell representation: %e A352344 k A352339(k) A352340(k) k/A352340(k) %e A352344 ---- ---------- ---------- ------------ %e A352344 2196 121222020 12 183 %e A352344 2197 121222021 13 169 %e A352344 2198 121222022 14 157 %t A352344 pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazyPellNivenQ[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; seq[count_, nConsec_] := Module[{lpn = lazyPellNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ lpn, c++; AppendTo[s, k - nConsec]]; lpn = Join[Rest[lpn], {lazyPellNivenQ[k]}]; k++]; s]; seq[30, 3] %Y A352344 Cf. A352339, A352340. %Y A352344 Subsequence of A352342 and A352343. %Y A352344 A352345 is a subsequence. %Y A352344 Similar sequences: A154701, A328206, A328210, A328214, A330932, A331087, A333428, A334310, A331822, A342428, A344343, A351716, A351721, A352091, A352109, A352322. %K A352344 nonn,base %O A352344 1,1 %A A352344 _Amiram Eldar_, Mar 12 2022