cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352346 Common terms between A061078 and A061077.

Original entry on oeis.org

26, 52, 148, 280, 320, 454, 1150, 1480, 8000, 41650, 80300, 165656, 166088, 614900, 2353700, 2859460, 28233200, 66130400, 68941640, 85717240, 107300320, 131507080, 155478800, 207666520, 1426680920, 1824596800, 2468014900, 2475648820, 5342351060, 5355218900, 5857281500, 8550475900, 36025361120
Offset: 1

Views

Author

Luca Onnis, Mar 12 2022

Keywords

Comments

Smarandache's conjecture: there are infinitely many terms.
This is a subsequence of A061076.

Examples

			26 is a term of this sequence, in fact:
26 = 1+3+5+7+9+1*1 (A061077(6)=26);
26 = 2+4+6+8+1*0+1*2+1*4 (A061078(7)=26).
		

References

  • A. Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001. Page 267

Crossrefs

Programs

  • Mathematica
    Intersection[Accumulate[Times @@@ IntegerDigits[Range[2, 10000000, 2]]],
    Accumulate[Times @@@ IntegerDigits[Range[1, 10000000, 2]]]]
  • Python
    from math import prod
    from itertools import islice
    def A352346_gen(): # generator of terms
        n1, m1, n2, m2 = 1, 1, 2, 2
        while True:
            if m1 == m2:
                yield m1
            k = 0
            while k == 0:
                n1 += 2
                m1 += (k := prod(int(d) for d in str(n1)))
            while m2 < m1:
                n2 += 2
                m2 += prod(int(d) for d in str(n2))
    A352346_list = list(islice(A352346_gen(),20)) # Chai Wah Wu, Mar 21 2022