A352356 Number of ways to write 12*n + 5 as 2*x^2 + 5*y^2 + 9*z^2 + x*y*z, where x, y and z are nonnegative integers.
1, 2, 1, 3, 3, 1, 2, 4, 3, 3, 2, 5, 1, 3, 4, 3, 3, 7, 4, 2, 5, 3, 4, 3, 5, 5, 5, 6, 4, 4, 4, 2, 4, 5, 6, 3, 6, 5, 6, 5, 4, 5, 6, 7, 4, 4, 6, 4, 7, 6, 5, 3, 3, 8, 3, 7, 7, 4, 5, 7, 5, 6, 6, 8, 4, 1, 4, 7, 4, 8, 6, 5, 8, 9, 8, 4, 8, 3, 7, 4, 4, 12, 3, 4, 11, 8, 1, 6, 7, 5, 5, 8, 9, 5, 8, 12, 5, 6, 6, 6, 6
Offset: 0
Keywords
Examples
a(0) = 1 with 12*0 + 5 = 5 = 2*0^2 + 5*1^2 + 9*0^2 + 0*1*0. a(2) = 1 with 12*2 + 5 = 29 = 2*0^2 + 5*2^2 + 9*1^2 + 0*2*1. a(5) = 1 with 12*5 + 5 = 65 = 2*3^2 + 5*1^2 + 9*2^2 + 3*1*2. a(12) = 1 with 12*12 + 5 = 149 = 2*0^2 + 5*1^2 + 9*4^2 + 0*1*4. a(65) = 1 with 12*65 + 5 = 785 = 2*1^2 + 5*9^2 + 9*6^2 + 1*9*6. a(86) = 1 with 12*86 + 5 = 1037 = 2*6^2 + 5*1^2 + 9*10^2 + 6*1*10. a(155) = 1 with 12*155 + 5 = 1865 = 2*2^2 + 5*6^2 + 9*13^2 + 2*6*13. a(338) = 1 with 12*338 + 5 = 4061 = 2*20^2 + 5*6^2 + 9*13^2 + 20*6*13. a(21030) = 1 with 12*21030 + 5 = 252365 = 2*32^2 + 5*126^2 + 9*39^2 + 32*126*39.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[8(12n+5-5y^2-9z^2)+y^2*z^2]&&Mod[Sqrt[8(12n+5-5y^2-9z^2)+y^2*z^2]-y*z,4]==0,r=r+1],{y,0,Sqrt[(12n+5)/5]},{z,0,Sqrt[(12n+5-5y^2)/9]}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments