cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352358 Expansion of e.g.f. 1/(1 - Sum_{k>=1} binomial(k+3,4) * x^k/k!).

This page as a plain text file.
%I A352358 #16 Mar 13 2022 17:19:05
%S A352358 1,1,7,51,509,6390,96036,1684284,33760588,761287221,19074162865,
%T A352358 525696741801,15805694091243,514818296979974,18058391314446224,
%U A352358 678683621386945560,27207234575709663516,1158858397815372736601,52263672918705232821477
%N A352358 Expansion of e.g.f. 1/(1 - Sum_{k>=1} binomial(k+3,4) * x^k/k!).
%F A352358 E.g.f.: 1/(1 - (x + 3*x^2/2 + x^3/2 + x^4/24)*exp(x)).
%F A352358 a(0) = 1; a(n) = Sum_{k=1..n} binomial(k+3,4) * binomial(n,k) * a(n-k).
%o A352358 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-(x+3*x^2/2+x^3/2+x^4/24)*exp(x))))
%o A352358 (PARI) a(n) = if(n==0, 1, sum(k=1, n, binomial(k+3, 4)*binomial(n, k)*a(n-k)));
%Y A352358 Cf. A006153, A308946, A352357.
%Y A352358 Cf. A000332, A346890.
%K A352358 nonn
%O A352358 0,3
%A A352358 _Seiichi Manyama_, Mar 13 2022