This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352360 #41 Apr 03 2023 14:35:51 %S A352360 399,455,511,511,616,665,1591,5439,5624,35941,47544,58015,8827,16835, %T A352360 18928,36741,73151,92680,16219,94335,97976,1235,4056,4459,12728,13545, %U A352360 15523,14744,33271,37539,13889,16856,17501,1911,4901,5681,196935,320624,324079,9435,12691,17501,22477,37128,44135 %N A352360 Three-column array giving list of primitive triples for integer-sided triangles with A < B < C < 2*Pi/3 and such that FA, FB, FC are also integers where F is the Fermat point of the triangle. %C A352360 Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a Torricelli triangle. %C A352360 Differs from A336328 where FA + FB + FC is an integer, but FA, FB and FC are fractions. _Jinyuan Wang_ has found that the 37th and 58th triples are the first triples for which the common denominator of these fractions is 1 (A351477). %C A352360 Each triple (a, b, c) is in increasing order, and the triples are displayed in the same increasing order of the corresponding triples in A336328 (see formulas). %C A352360 +-------+-------+-------+---------+--------+-------+-------+--------+--------+ %C A352360 | a | b | c |gcd(a,b,c)| FA | FB | FC | d | a+b+c | %C A352360 +-------+-------+-------+----------+-------+-------+-------+--------+--------+ %C A352360 | 399 | 455 | 511 | 7 | 325 | 264 | 195 | 784 | 1365 | %C A352360 | 511 | 616 | 665 | 7 | 440 | 325 | 264 | 1029 | 1792 | %C A352360 | 1591 | 5439 | 5624 | 37 | 5016 | 1064 | 765 | 6845 | 12654 | %C A352360 | 35941 | 47544 | 58015 | 283 | 39360 | 27265 | 13464 | 80089 | 141500 | %C A352360 | 8827 | 16835 | 18928 | 91 | 14800 | 6528 | 3515 | 24843 | 44590 | %C A352360 | 36741 | 73151 | 92680 | 331 | 70720 | 34200 | 4641 | 109561 | 202572 | %C A352360 | 16219 | 94335 | 97976 | 331 | 91200 | 12376 | 5985 | 109561 | 208530 | %C A352360 | 1235 | 4056 | 4459 | 13 | 3864 | 1015 | 360 | 5239 | 9750 | %C A352360 | 12728 | 13545 | 15523 | 43 | 9405 | 8512 | 6120 | 24037 | 41796 | %C A352360 | 14744 | 33271 | 37539 | 97 | 30429 | 11520 | 5096 | 47045 | 87554 | %C A352360 .............................................................................. %C A352360 The sequences with terms of this table are listed in Crossrefs section; here, d = FA + FB + FC. The perimeter corresponding to n-th triple a+b+c = A336333(n) * A351477(n). %H A352360 Project Euler, <a href="https://projecteuler.net/problem=143">Problem 143 - Investigating the Torricelli point of a triangle</a>. %F A352360 a(3n-2) = A336328(3n-2) * A351477(n), a(3n-1) = A336328(3n-1) * A351477(n), a(3n) = A336328(3n) * A351477(n), for n >= 1. %e A352360 The array begins: %e A352360 399, 455, 511; %e A352360 511, 616, 665; %e A352360 1591, 5439, 5624; %e A352360 35941, 47544, 58015; %e A352360 8827, 16835, 18928; %e A352360 36741, 73151, 92680; %e A352360 ..................... %e A352360 For 1st triple (399, 455, 511) with gcd(399, 455, 511) = 7, we get FA = 325, FB = 264 and FC = 195. This smallest triangle such that a, b, c, FA, FB, FC are all integers is the example proposed in Project Euler's link. %Y A352360 Cf. A336328. %Y A352360 Cf. A351477 (gcd(a,b,c)), A351801 (FA), A351802 (FB), A351803 (FC), A351476 (FA+FB+FC). %K A352360 nonn,tabf %O A352360 1,1 %A A352360 _Bernard Schott_, Mar 17 2022