This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352362 #22 Feb 16 2025 08:34:03 %S A352362 2,2,0,2,1,2,2,2,3,0,2,3,6,4,2,2,4,11,14,7,0,2,5,18,36,34,11,2,2,6,27, %T A352362 76,119,82,18,0,2,7,38,140,322,393,198,29,2,2,8,51,234,727,1364,1298, %U A352362 478,47,0,2,9,66,364,1442,3775,5778,4287,1154,76,2 %N A352362 Array read by ascending antidiagonals. T(n, k) = L(k, n) where L are the Lucas polynomials. %H A352362 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LucasPolynomial.html">Lucas Polynomial</a> %F A352362 T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*(k/(k-j))*n^(k-2*j) for k >= 1. %F A352362 T(n, k) = (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k. %F A352362 T(n, k) = [x^k] ((2 - n*x)/(1 - n*x - x^2)). %F A352362 T(n, k) = n^k*hypergeom([1/2 - k/2, -k/2], [1 - k], -4/n^2) for n,k >= 1. %e A352362 Array starts: %e A352362 n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, ... %e A352362 -------------------------------------------------------------- %e A352362 [0] 2, 0, 2, 0, 2, 0, 2, 0, 2, ... A010673 %e A352362 [1] 2, 1, 3, 4, 7, 11, 18, 29, 47, ... A000032 %e A352362 [2] 2, 2, 6, 14, 34, 82, 198, 478, 1154, ... A002203 %e A352362 [3] 2, 3, 11, 36, 119, 393, 1298, 4287, 14159, ... A006497 %e A352362 [4] 2, 4, 18, 76, 322, 1364, 5778, 24476, 103682, ... A014448 %e A352362 [5] 2, 5, 27, 140, 727, 3775, 19602, 101785, 528527, ... A087130 %e A352362 [6] 2, 6, 38, 234, 1442, 8886, 54758, 337434, 2079362, ... A085447 %e A352362 [7] 2, 7, 51, 364, 2599, 18557, 132498, 946043, 6754799, ... A086902 %e A352362 [8] 2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, ... A086594 %e A352362 [9] 2, 9, 83, 756, 6887, 62739, 571538, 5206581, 47430767, ... A087798 %e A352362 A007395|A059100| %e A352362 A001477 A079908 %p A352362 T := (n, k) -> (n/2 + sqrt((n/2)^2 + 1))^k + (n/2 - sqrt((n/2)^2 + 1))^k: %p A352362 seq(seq(simplify(T(n - k, k)), k = 0..n), n = 0..10); %t A352362 Table[LucasL[k, n], {n, 0, 9}, {k, 0, 9}] // TableForm %t A352362 (* or *) %t A352362 T[ 0, k_] := 2 Mod[k+1, 2]; T[n_, 0] := 2; %t A352362 T[n_, k_] := n^k Hypergeometric2F1[1/2 - k/2, -k/2, 1 - k, -4/n^2]; %t A352362 Table[T[n, k], {n, 0, 9}, {k, 0, 8}] // TableForm %o A352362 (PARI) %o A352362 T(n, k) = ([0, 1; 1, k]^n*[2; k])[1, 1] ; %o A352362 export(T) %o A352362 for(k = 0, 9, print(parvector(10, n, T(n - 1, k)))) %Y A352362 Rows: A010673, A000032, A002203, A006497, A014448, A087130, A085447, A086902, A086594, A087798. %Y A352362 Columns: A007395, A001477, A059100, A079908. %Y A352362 Cf. A320570 (main diagonal), A114525, A309220 (variant), A117938 (variant), A352361 (Fibonacci polynomials), A350470 (Jacobsthal polynomials). %K A352362 nonn,tabl %O A352362 0,1 %A A352362 _Peter Luschny_, Mar 18 2022