This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352363 #9 Mar 15 2022 08:17:02 %S A352363 1,0,1,0,1,1,0,2,3,1,0,6,11,6,1,0,6,50,35,10,1,0,30,166,225,85,15,1,0, %T A352363 20,756,1246,735,175,21,1,0,140,2932,7588,5761,1960,322,28,1,0,70, %U A352363 11556,45296,46116,20181,4536,546,36,1 %N A352363 Triangle read by rows. The incomplete Bell transform of the swinging factorials A056040. %F A352363 Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n). %F A352363 (T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n), where s(n) = n!/floor(n/2)!^2. %e A352363 Triangle starts: %e A352363 [0] 1; %e A352363 [1] 0, 1; %e A352363 [2] 0, 1, 1; %e A352363 [3] 0, 2, 3, 1; %e A352363 [4] 0, 6, 11, 6, 1; %e A352363 [5] 0, 6, 50, 35, 10, 1; %e A352363 [6] 0, 30, 166, 225, 85, 15, 1; %e A352363 [7] 0, 20, 756, 1246, 735, 175, 21, 1; %e A352363 [8] 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1; %e A352363 [9] 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1; %p A352363 SwingNumber := n -> n! / iquo(n, 2)!^2: %p A352363 for n from 0 to 9 do %p A352363 seq(IncompleteBellB(n, k, seq(SwingNumber(j), j = 0..n)), k = 0..n) od; %Y A352363 Cf. A056040, A352364 (row sums), A352365 (alternating row sums). %Y A352363 Cf. A352366, A352369. %K A352363 nonn,tabl %O A352363 0,8 %A A352363 _Peter Luschny_, Mar 15 2022