cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352363 Triangle read by rows. The incomplete Bell transform of the swinging factorials A056040.

This page as a plain text file.
%I A352363 #9 Mar 15 2022 08:17:02
%S A352363 1,0,1,0,1,1,0,2,3,1,0,6,11,6,1,0,6,50,35,10,1,0,30,166,225,85,15,1,0,
%T A352363 20,756,1246,735,175,21,1,0,140,2932,7588,5761,1960,322,28,1,0,70,
%U A352363 11556,45296,46116,20181,4536,546,36,1
%N A352363 Triangle read by rows. The incomplete Bell transform of the swinging factorials A056040.
%F A352363 Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
%F A352363 (T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n), where s(n) = n!/floor(n/2)!^2.
%e A352363 Triangle starts:
%e A352363 [0] 1;
%e A352363 [1] 0,   1;
%e A352363 [2] 0,   1,     1;
%e A352363 [3] 0,   2,     3,     1;
%e A352363 [4] 0,   6,    11,     6,     1;
%e A352363 [5] 0,   6,    50,    35,    10,     1;
%e A352363 [6] 0,  30,   166,   225,    85,    15,    1;
%e A352363 [7] 0,  20,   756,  1246,   735,   175,   21,   1;
%e A352363 [8] 0, 140,  2932,  7588,  5761,  1960,  322,  28, 1;
%e A352363 [9] 0,  70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1;
%p A352363 SwingNumber := n -> n! / iquo(n, 2)!^2:
%p A352363 for n from 0 to 9 do
%p A352363 seq(IncompleteBellB(n, k, seq(SwingNumber(j), j = 0..n)), k = 0..n) od;
%Y A352363 Cf. A056040, A352364 (row sums), A352365 (alternating row sums).
%Y A352363 Cf. A352366, A352369.
%K A352363 nonn,tabl
%O A352363 0,8
%A A352363 _Peter Luschny_, Mar 15 2022