A352372 Triangle read by rows. Let R(n, k) = Y(n, k, B) where Y are the partial Bell polynomials and B is the list [Bernoulli(j, 1), j = 0..n]. T(n, k) are R(n, k) normalized by the lcm of the denominators of the terms in row n (A048803).
1, 0, 1, 0, 1, 2, 0, 1, 9, 6, 0, 0, 17, 36, 12, 0, -2, 50, 325, 300, 60, 0, 0, 28, 2475, 5250, 2700, 360, 0, 60, -882, 14161, 77175, 80850, 26460, 2520, 0, 0, -608, 5488, 239267, 499800, 311640, 70560, 5040, 0, -504, 6480, -57404, 735588, 3563721, 3969000, 1640520, 272160, 15120
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 1, 2; [3] 0, 1, 9, 6; [4] 0, 0, 17, 36, 12; [5] 0, -2, 50, 325, 300, 60; [6] 0, 0, 28, 2475, 5250, 2700, 360; [7] 0, 60, -882, 14161, 77175, 80850, 26460, 2520; [8] 0, 0, -608, 5488, 239267, 499800, 311640, 70560, 5040; . For example row 7 is 2520*[R(7, k), k = 0..7] = 2520*[0, 1/42, -7/20, 2023/360, 245/8, 385/12, 21/2, 1] since lcm(1, 42, 20, 360, 8, 12, 2, 1) = A048803(7) = 2520. Conversely, since R(n, n) = 1 and T(n, n) = Product_{k=1..n} rad(k), the R(n, k) can be obtained by dividing the terms of row n by T(n, n).
Programs
-
Mathematica
B[n_, k_] := BellY[n, k, Table[BernoulliB[j, 1], {j, 0, n}]]; P[n_] := Select[Divisors[n], PrimeQ]; T[n_, k_] := B[n, k] Product[Product[p, {p, P[j]}], {j, 1, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten