cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352376 Expansion of e.g.f. exp(1 - (1 + x) * exp(x)).

This page as a plain text file.
%I A352376 #24 Oct 11 2024 12:35:46
%S A352376 1,-2,1,6,-2,-58,-91,732,4365,-1468,-140682,-685886,1791101,43923266,
%T A352376 216543097,-939472974,-22047365454,-127801626362,541608607233,
%U A352376 16524264652568,124850392700061,-279906371211584,-16968403342944782,-176737444660619046
%N A352376 Expansion of e.g.f. exp(1 - (1 + x) * exp(x)).
%H A352376 Seiichi Manyama, <a href="/A352376/b352376.txt">Table of n, a(n) for n = 0..554</a>
%F A352376 a(0) = 1; a(n) = -Sum_{k=1..n} (k+1) * binomial(n-1,k-1) * a(n-k).
%t A352376 With[{nn=30},CoefficientList[Series[Exp[1-(1+x)Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Oct 11 2024 *)
%o A352376 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)*exp(x))))
%o A352376 (PARI) a(n) = if(n==0, 1, -sum(k=1, n, (k+1)*binomial(n-1, k-1)*a(n-k)));
%Y A352376 Cf. A209801, A345652.
%K A352376 sign
%O A352376 0,2
%A A352376 _Seiichi Manyama_, Mar 15 2022