This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352393 #22 Jun 09 2022 05:44:59 %S A352393 0,2,4,6,12,14,28,60,68,2070,7910,10740 %N A352393 Numbers k such that 3^k + 5^k + 7^k + 11^k + 13^k is prime. %C A352393 Note that k must be even. %C A352393 If it exists, a(13) > 31000. - _Hugo Pfoertner_, Jun 08 2022 %e A352393 For k=2 we obtain f(2) = 3^2 + 5^2 + 7^2 + 11^2 + 13^2 = 373 which is a prime. %t A352393 Select[Range[0, 1000], PrimeQ[3^# + 5^# + 7^# + 11^# +13^#] &] %o A352393 (Python) %o A352393 from sympy import isprime %o A352393 from itertools import count, islice %o A352393 def agen(): yield from (k for k in count(0) if isprime(3**k + 5**k + 7**k + 11**k + 13**k)) %o A352393 print(list(islice(agen(), 9))) # _Michael S. Branicky_, Jun 07 2022 %Y A352393 Cf. A354831, A160773. %K A352393 nonn,hard,more %O A352393 1,2 %A A352393 _Hemjyoti Nath_, Jun 07 2022 %E A352393 a(11)-a(12) from _Hugo Pfoertner_, Jun 07 2022