A352394 a(n) = n for n <= 3; let i = a(n-2) and j = a(n-1); a(n+1) = least k not already in the sequence such that (j, k) = 1 and (i, k) = m > 1 and only one of either omega(i) or omega(k) exceed omega(m), where omega = A001221, and either i | k or k | i.
1, 2, 3, 10, 21, 5, 7, 15, 14, 165, 182, 11, 13, 22, 39, 110, 273, 55, 91, 220, 819, 4, 9, 20, 63, 260, 693, 26, 33, 130, 231, 65, 77, 195, 154, 3315, 2926, 17, 19, 34, 57, 170, 399, 85, 133, 255, 266, 51, 38, 357, 190, 119, 95, 238, 285, 2618, 3705, 187, 247
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..5000
- Michael De Vlieger, Annotated log-log scatterplot of a(n), n = 1..2^12, labeling records in red and local minima in blue, highlighting primes in green, composite prime powers in cyan, with fixed points in gold.
Programs
-
Mathematica
nn = 120; c[_] = False; a[1] = 1; i = a[2] = 2; j = a[3] = 3; u = 4; c[1] = c[2] = True; facs = {2}; Do[k = u; While[Nand[! c[k], Xor[And[Length@ Complement[facs, #] > 0, Divisible[i, k]], And[Length@ Complement[#, facs] > 0, Divisible[k, i]]] &[FactorInteger[k][[All, 1]]], CoprimeQ[j, k]], k++]; Set[{a[n], c[k]}, {k, True}]; i = j; j = k; facs = FactorInteger[i][[All, 1]]; If[k == u, While[c[u], u++]], {n, 4, nn}]; Array[a, nn]
Comments