cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352403 Indices of metallic means that are powers of other metallic means.

This page as a plain text file.
%I A352403 #31 Mar 18 2022 21:49:58
%S A352403 4,11,14,29,36,76,82,140,199,234,364,393,478,521,536,756,1030,1364,
%T A352403 1764,2236,2786,3420,3571,3775,4144,4287,4964,5886,6916,8060,8886,
%U A352403 9324,9349,10714,12236,13896,15700,16238,17654,18557,19764,22036,24476,27090,29884
%N A352403 Indices of metallic means that are powers of other metallic means.
%C A352403 Metallic mean k is mm(k) = (k + sqrt(k^2 + 4))/2.
%C A352403 The 4th metallic mean (mm), sometimes called the "copper" mean, is mm(4) = (4 + sqrt(16 + 4))/2 = 4.236... This value is also = 1.618...^3, where 1.618... is the 1st mm, the "golden" one, or (1 + sqrt(1 + 4))/2. This can be shown algebraically.
%C A352403 Any odd power of an mm will give another mm. The odd powers of the 1st mm are:
%C A352403 phi^1 =  1.618..., the  1st mm,
%C A352403 phi^3 =  4.236..., the  4th mm,
%C A352403 phi^5 = 11.090..., the 11th mm,
%C A352403 phi^7 = 29.034..., the 29th mm,
%C A352403 etc.
%C A352403 The indices of these mm's are 1, 4, 11, 29, 76, ... (A002878).
%C A352403 In parallel, the powers of the 2nd mm are:
%C A352403 slv^1 =  2.414..., the  2nd mm,
%C A352403 slv^3 = 14.071..., the 14th mm,
%C A352403 slv^5 = 82.012..., the 82nd mm,
%C A352403 etc.
%C A352403 The indices of these mm's are 2, 14, 82, 478, 2786, ... (A077444).
%C A352403 The indices of the mm's for the 3rd mm are A259131. The 4th mm's are A267797.
%C A352403 Every mm produces such a sequence.
%C A352403 The union of all such sequences (excluding their first terms) is this sequence.
%e A352403 76 is a term since mm(76) = mm(1)^9 is a power of an earlier mean (the golden ratio in this case, and 76 is a Lucas number).
%e A352403 From _Peter Luschny_, Mar 16 2022: (Start)
%e A352403 A representation of the values claimed in the definition is given for the first 8 terms by:
%e A352403 ( 4  +  2*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^3.
%e A352403 (11  +  5*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^5.
%e A352403 (14  +  5*sqrt(8)) / 2 = ((2 + sqrt(8)) / 2)^3.
%e A352403 (29  + 13*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^7.
%e A352403 (36  + 10*sqrt(13))/ 2 = ((3 + sqrt(13))/ 2)^3.
%e A352403 (76  + 34*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^9.
%e A352403 (82  + 29*sqrt(8)) / 2 = ((2 + sqrt(8)) / 2)^5.
%e A352403 (140 + 26*sqrt(29))/ 2 = ((5 + sqrt(29))/ 2)^3.
%e A352403 (End)
%t A352403 getMetallicMean[n_] := (n + Power[Power[n, 2] + 4, 1 / 2]) / 2;
%t A352403 getMetallicCompositesUpTo[maxCandidateIndex_] := Module[
%t A352403   {sequence, metallicMeanIndex, metallicMean, oddPower, candidateIndex},
%t A352403   sequence = {};
%t A352403   metallicMeanIndex = 1;
%t A352403   While[
%t A352403     True,
%t A352403     (* skip metallic means already shown to be a power of another *)
%t A352403     If[MemberQ[sequence, metallicMeanIndex], metallicMeanIndex++];
%t A352403     metallicMean = getMetallicMean[metallicMeanIndex];
%t A352403     oddPower = 3;
%t A352403     While[
%t A352403       True,
%t A352403       candidateIndex = Floor[Power[metallicMean, oddPower]];
%t A352403       If[
%t A352403         candidateIndex <= maxCandidateIndex,
%t A352403         AppendTo[sequence, candidateIndex];
%t A352403         oddPower += 2,
%t A352403         Break[]
%t A352403       ]
%t A352403     ];
%t A352403     If[
%t A352403       oddPower == 3,
%t A352403       (* no chance of finding further results below the max, if even the first candidate at this index exceeded it *)
%t A352403       Break[],
%t A352403       metallicMeanIndex++
%t A352403     ];
%t A352403   ];
%t A352403   Sort[sequence]
%t A352403 ];
%t A352403 getMetallicCompositesUpTo[50000]
%Y A352403 Union of A002878, A077444, A259131, A267797, etc., minus each sequence's first entry.
%K A352403 nonn
%O A352403 1,1
%A A352403 _Douglas Blumeyer_, Mar 14 2022