This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352403 #31 Mar 18 2022 21:49:58 %S A352403 4,11,14,29,36,76,82,140,199,234,364,393,478,521,536,756,1030,1364, %T A352403 1764,2236,2786,3420,3571,3775,4144,4287,4964,5886,6916,8060,8886, %U A352403 9324,9349,10714,12236,13896,15700,16238,17654,18557,19764,22036,24476,27090,29884 %N A352403 Indices of metallic means that are powers of other metallic means. %C A352403 Metallic mean k is mm(k) = (k + sqrt(k^2 + 4))/2. %C A352403 The 4th metallic mean (mm), sometimes called the "copper" mean, is mm(4) = (4 + sqrt(16 + 4))/2 = 4.236... This value is also = 1.618...^3, where 1.618... is the 1st mm, the "golden" one, or (1 + sqrt(1 + 4))/2. This can be shown algebraically. %C A352403 Any odd power of an mm will give another mm. The odd powers of the 1st mm are: %C A352403 phi^1 = 1.618..., the 1st mm, %C A352403 phi^3 = 4.236..., the 4th mm, %C A352403 phi^5 = 11.090..., the 11th mm, %C A352403 phi^7 = 29.034..., the 29th mm, %C A352403 etc. %C A352403 The indices of these mm's are 1, 4, 11, 29, 76, ... (A002878). %C A352403 In parallel, the powers of the 2nd mm are: %C A352403 slv^1 = 2.414..., the 2nd mm, %C A352403 slv^3 = 14.071..., the 14th mm, %C A352403 slv^5 = 82.012..., the 82nd mm, %C A352403 etc. %C A352403 The indices of these mm's are 2, 14, 82, 478, 2786, ... (A077444). %C A352403 The indices of the mm's for the 3rd mm are A259131. The 4th mm's are A267797. %C A352403 Every mm produces such a sequence. %C A352403 The union of all such sequences (excluding their first terms) is this sequence. %e A352403 76 is a term since mm(76) = mm(1)^9 is a power of an earlier mean (the golden ratio in this case, and 76 is a Lucas number). %e A352403 From _Peter Luschny_, Mar 16 2022: (Start) %e A352403 A representation of the values claimed in the definition is given for the first 8 terms by: %e A352403 ( 4 + 2*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^3. %e A352403 (11 + 5*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^5. %e A352403 (14 + 5*sqrt(8)) / 2 = ((2 + sqrt(8)) / 2)^3. %e A352403 (29 + 13*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^7. %e A352403 (36 + 10*sqrt(13))/ 2 = ((3 + sqrt(13))/ 2)^3. %e A352403 (76 + 34*sqrt(5)) / 2 = ((1 + sqrt(5)) / 2)^9. %e A352403 (82 + 29*sqrt(8)) / 2 = ((2 + sqrt(8)) / 2)^5. %e A352403 (140 + 26*sqrt(29))/ 2 = ((5 + sqrt(29))/ 2)^3. %e A352403 (End) %t A352403 getMetallicMean[n_] := (n + Power[Power[n, 2] + 4, 1 / 2]) / 2; %t A352403 getMetallicCompositesUpTo[maxCandidateIndex_] := Module[ %t A352403 {sequence, metallicMeanIndex, metallicMean, oddPower, candidateIndex}, %t A352403 sequence = {}; %t A352403 metallicMeanIndex = 1; %t A352403 While[ %t A352403 True, %t A352403 (* skip metallic means already shown to be a power of another *) %t A352403 If[MemberQ[sequence, metallicMeanIndex], metallicMeanIndex++]; %t A352403 metallicMean = getMetallicMean[metallicMeanIndex]; %t A352403 oddPower = 3; %t A352403 While[ %t A352403 True, %t A352403 candidateIndex = Floor[Power[metallicMean, oddPower]]; %t A352403 If[ %t A352403 candidateIndex <= maxCandidateIndex, %t A352403 AppendTo[sequence, candidateIndex]; %t A352403 oddPower += 2, %t A352403 Break[] %t A352403 ] %t A352403 ]; %t A352403 If[ %t A352403 oddPower == 3, %t A352403 (* no chance of finding further results below the max, if even the first candidate at this index exceeded it *) %t A352403 Break[], %t A352403 metallicMeanIndex++ %t A352403 ]; %t A352403 ]; %t A352403 Sort[sequence] %t A352403 ]; %t A352403 getMetallicCompositesUpTo[50000] %Y A352403 Union of A002878, A077444, A259131, A267797, etc., minus each sequence's first entry. %K A352403 nonn %O A352403 1,1 %A A352403 _Douglas Blumeyer_, Mar 14 2022