cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352423 Numbers that are the sum of some number of consecutive prime cubes.

This page as a plain text file.
%I A352423 #14 Apr 18 2024 06:11:05
%S A352423 8,27,35,125,152,160,343,468,495,503,1331,1674,1799,1826,1834,2197,
%T A352423 3528,3871,3996,4023,4031,4913,6859,7110,8441,8784,8909,8936,8944,
%U A352423 11772,12167,13969,15300,15643,15768,15795,15803,19026,23939,24389,26136,27467,27810,27935,27962,27970,29791
%N A352423 Numbers that are the sum of some number of consecutive prime cubes.
%H A352423 Michael S. Branicky, <a href="/A352423/b352423.txt">Table of n, a(n) for n = 1..10000</a>
%H A352423 Cathal O'Sullivan, Jonathan P. Sorenson, and Aryn Stahl, <a href="https://arxiv.org/abs/2204.10930">An Algorithm to Find Sums of Consecutive Powers of Primes</a>, arXiv:2204.10930 [math.NT], 2022-2023. See S3 p. 10.
%o A352423 (PARI) lista(nn) = {my(list = List(), ip = primepi(nn), vp = primes(ip)); for(i=1, ip, my(s=vp[i]^3); listput(list, s); for (j=i+1, ip, s += vp[j]^3; if (s >vp[ip]^3, break); listput(list, s); ); ); Vec(vecsort(list, , 8)); }
%o A352423 (Python)
%o A352423 import heapq
%o A352423 from sympy import prime
%o A352423 from itertools import islice
%o A352423 def agen(): # generator of terms
%o A352423     p = prime(1)**3; h = [(p, 1, 1)]; nextcount = 2
%o A352423     while True:
%o A352423         (v, s, l) = heapq.heappop(h)
%o A352423         yield v
%o A352423         if v >= p:
%o A352423             p += prime(nextcount)**3
%o A352423             heapq.heappush(h, (p, 1, nextcount))
%o A352423             nextcount += 1
%o A352423         v -= prime(s)**3; s += 1; l += 1; v += prime(l)**3
%o A352423         heapq.heappush(h, (v, s, l))
%o A352423 print(list(islice(agen(), 47))) # _Michael S. Branicky_, Apr 26 2022
%Y A352423 Cf. A030078, A034707, A340771.
%K A352423 nonn
%O A352423 1,1
%A A352423 _Michel Marcus_, Apr 26 2022