This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352423 #14 Apr 18 2024 06:11:05 %S A352423 8,27,35,125,152,160,343,468,495,503,1331,1674,1799,1826,1834,2197, %T A352423 3528,3871,3996,4023,4031,4913,6859,7110,8441,8784,8909,8936,8944, %U A352423 11772,12167,13969,15300,15643,15768,15795,15803,19026,23939,24389,26136,27467,27810,27935,27962,27970,29791 %N A352423 Numbers that are the sum of some number of consecutive prime cubes. %H A352423 Michael S. Branicky, <a href="/A352423/b352423.txt">Table of n, a(n) for n = 1..10000</a> %H A352423 Cathal O'Sullivan, Jonathan P. Sorenson, and Aryn Stahl, <a href="https://arxiv.org/abs/2204.10930">An Algorithm to Find Sums of Consecutive Powers of Primes</a>, arXiv:2204.10930 [math.NT], 2022-2023. See S3 p. 10. %o A352423 (PARI) lista(nn) = {my(list = List(), ip = primepi(nn), vp = primes(ip)); for(i=1, ip, my(s=vp[i]^3); listput(list, s); for (j=i+1, ip, s += vp[j]^3; if (s >vp[ip]^3, break); listput(list, s); ); ); Vec(vecsort(list, , 8)); } %o A352423 (Python) %o A352423 import heapq %o A352423 from sympy import prime %o A352423 from itertools import islice %o A352423 def agen(): # generator of terms %o A352423 p = prime(1)**3; h = [(p, 1, 1)]; nextcount = 2 %o A352423 while True: %o A352423 (v, s, l) = heapq.heappop(h) %o A352423 yield v %o A352423 if v >= p: %o A352423 p += prime(nextcount)**3 %o A352423 heapq.heappush(h, (p, 1, nextcount)) %o A352423 nextcount += 1 %o A352423 v -= prime(s)**3; s += 1; l += 1; v += prime(l)**3 %o A352423 heapq.heappush(h, (v, s, l)) %o A352423 print(list(islice(agen(), 47))) # _Michael S. Branicky_, Apr 26 2022 %Y A352423 Cf. A030078, A034707, A340771. %K A352423 nonn %O A352423 1,1 %A A352423 _Michel Marcus_, Apr 26 2022