This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352425 #41 Feb 22 2024 20:11:54 %S A352425 1,2,3,4,5,6,3,2,1,7,8,9,4,3,2,10,11,12,5,4,3,13,14,15,6,5,4,5,4,3,2, %T A352425 1,16,17,18,7,6,5,19,20,6,5,4,3,2,21,8,7,6,22,23,24,9,8,7,25,7,6,5,4, %U A352425 3,26,27,10,9,8,28,7,6,5,4,3,2,1,29,30,11,10,9,8,7,6,5,4 %N A352425 Irregular triangle read by rows in which row n lists the partitions of n into an odd number of consecutive parts. %C A352425 Conjecture: the total number of parts in all partitions of n into an odd number of consecutive parts equals the sum of odd divisors of n that are <= A003056(n). In other words: row n has A341309(n) terms. %C A352425 The first partition with 2*m - 1 parts appears in the row A000384(m), m >= 1. %e A352425 Triangle begins: %e A352425 [1]; %e A352425 [2]; %e A352425 [3], %e A352425 [4]; %e A352425 [5]; %e A352425 [6], [3, 2, 1]; %e A352425 [7]; %e A352425 [8]; %e A352425 [9], [4, 3, 2]; %e A352425 [10]; %e A352425 [11]; %e A352425 [12], [5, 4, 3]; %e A352425 [13]; %e A352425 [14]; %e A352425 [15], [6, 5, 4], [5, 4, 3, 2, 1]; %e A352425 [16]; %e A352425 [17]; %e A352425 [18], [7, 6, 5]; %e A352425 [19]; %e A352425 [20], [6, 5, 4, 3, 2]; %e A352425 [21], [8, 7, 6]; %e A352425 [22]; %e A352425 [23]; %e A352425 [24], [9, 8, 7]; %e A352425 [25], [7, 6, 5, 4, 3]; %e A352425 [26]; %e A352425 [27], [10, 9, 8]; %e A352425 [28], [7, 6, 5, 4, 3, 2, 1]; %e A352425 ... %e A352425 In the diagram below the m-th staircase walk starts at row A000384(m). %e A352425 The number of horizontal line segments in the n-th row equals A082647(n), the number of partitions of n into an odd number of consecutive parts, so we can find such partitions as follows: consider the vertical blocks of numbers that start exactly in the n-th row of the diagram, for example: for n = 15 consider the vertical blocks of numbers that start exactly in the 15th row. They are [15], [6, 5, 4]. [5, 4, 3, 2, 1], equaling the 15th row of the above triangle. %e A352425 _ %e A352425 _|1| %e A352425 _|2 | %e A352425 _|3 | %e A352425 _|4 | %e A352425 _|5 _| %e A352425 _|6 |3| %e A352425 _|7 |2| %e A352425 _|8 _|1| %e A352425 _|9 |4 | %e A352425 _|10 |3 | %e A352425 _|11 _|2 | %e A352425 _|12 |5 | %e A352425 _|13 |4 | %e A352425 _|14 _|3 _| %e A352425 _|15 |6 |5| %e A352425 _|16 |5 |4| %e A352425 _|17 _|4 |3| %e A352425 _|18 |7 |2| %e A352425 _|19 |6 _|1| %e A352425 _|20 _|5 |6 | %e A352425 _|21 |8 |5 | %e A352425 _|22 |7 |4 | %e A352425 _|23 _|6 |3 | %e A352425 _|24 |9 _|2 | %e A352425 _|25 |8 |7 | %e A352425 _|26 _|7 |6 | %e A352425 _|27 |10 |5 _| %e A352425 |28 |9 |4 |7| %e A352425 ... %e A352425 The diagram is infinite. %e A352425 For more information about the diagram see A286000. %Y A352425 Subsequence of A299765. %Y A352425 Row sums give A352257. %Y A352425 Column 1 gives A000027. %Y A352425 Records give A000027. %Y A352425 Row n contains A082647(n) of the mentioned partitions. %Y A352425 Cf. A000384, A003056, A067742, A204217, A237048, A237591, A237593, A240542, A245092, A285574, A285901, A286000, A286001, A320051, A320137, A320142, A341309, A351824. %K A352425 nonn,tabf %O A352425 1,2 %A A352425 _Omar E. Pol_, Mar 15 2022