A352427 a(n) is the number of trailing 0's in the minimal representation of n in terms of the positive Pell numbers (A317204).
0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 3, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 3, 0, 1, 0, 1, 4, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 3, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 3, 0, 1, 0, 1, 4, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 5, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 3, 0, 1, 0, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; a[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerExponent[Total[3^(s - 1)], 3]]; Array[a, 100]
Comments