This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352430 #10 Mar 23 2022 09:41:26 %S A352430 1,1,2,6,24,120,721,5054,40488,364896,3654000,40249441,483659508, %T A352430 6296246424,88269037584,1325861901000,21243052172161,361630022931666, %U A352430 6518319228715302,124018898163736536,2483799332459535000,52231733840672804881,1150683180739820615582,26502219276887376327696 %N A352430 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} binomial(n,5*k+1) * a(n-5*k-1). %H A352430 Seiichi Manyama, <a href="/A352430/b352430.txt">Table of n, a(n) for n = 0..449</a> %F A352430 E.g.f.: 1 / (1 - Sum_{k>=0} x^(5*k+1) / (5*k+1)!). %t A352430 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 5 k + 1] a[n - 5 k - 1], {k, 0, Floor[(n - 1)/5]}]; Table[a[n], {n, 0, 23}] %t A352430 nmax = 23; CoefficientList[Series[1/(1 - Sum[x^(5 k + 1)/(5 k + 1)!, {k, 0, nmax}]), {x, 0, nmax}], x] Range[0, nmax]! %o A352430 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+1)/(5*k+1)!)))) \\ _Seiichi Manyama_, Mar 23 2022 %Y A352430 Cf. A000670, A006154, A243666, A333882, A352428, A352429. %K A352430 nonn %O A352430 0,3 %A A352430 _Ilya Gutkovskiy_, Mar 16 2022