A352432 Number of tilings of a 4 X n rectangle using dominoes and 2 X 2 tiles.
1, 1, 11, 29, 165, 593, 2773, 11093, 48605, 201829, 864901, 3638261, 15472261, 65377669, 277294885, 1173523013, 4972873413, 21056700293, 89200845765, 377774394309, 1600161267781, 6777276186821, 28705824305861, 121582507360709
Offset: 0
Keywords
Examples
a(2)=11: ___ ___ ___ ___ ___ ___ | | | | | | | | | |___| |___| |___| |___| |___| |_|_| |___| |___| | | | | | |___| | | | | |___| |___| |_|_| |___| |___| |___| |___| . ___ ___ ___ ___ ___ |___| | | | |___| |___| | | | | | |_|_| | | | |___| |_|_| |___| | | | |_|_| | | | |___| |___| |_|_| |___| |_|_| |___|
Links
- Index entries for linear recurrences with constant coefficients, signature (3,10,-18,-14,20).
Formula
G.f.:(1 - 2*x - 2*x^2 + 4*x^3)/(1 - 3*x - 10*x^2 + 18*x^3 + 14*x^4 - 20*x^5).
a(n) = 3*a(n-1) + 10*a(n-2) - 18*a(n-3) - 14*a(n-4) + 20*a(n-5).
Comments