This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352442 #9 Feb 16 2025 08:34:03 %S A352442 5,5,7,5,11,13,5,17,13,5,19,17,29,5,23,31,29,19,29,41,37,17,37,43,53, %T A352442 41,37,29,53,59,53,61,53,41,67,59,47,71,5,47,29,79,71,73,83,53,83,37, %U A352442 59,83,37,29,71,29,101,103,107,67,89,73,67,59,101,79,59,107,79,113,5,109 %N A352442 Largest prime "r" among all pairs of Goldbach partitions of A352240(n), (p,q) and (r,s) with p,q,r,s prime and p < r <= s < q, such that all integers in the open intervals (p,r) and (s,q) are composite. %C A352442 See A352240. %H A352442 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a> %H A352442 Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a> %H A352442 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %H A352442 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A352442 a(n) = A352240(n) - A352443(n). %e A352442 a(12) = 17; A352240(12) = 54 has 3 pairs of Goldbach partitions (7,47),(11,43); (11,43),(13,41); and (13,41),(17,37); with all integers composite in the open intervals (7,11) and (43,47), (11,13) and (41,43), and, (13,17) and (37,41) respectively. The largest prime "r" among the Goldbach pairs is 17. %Y A352442 Cf. A187797, A278700, A352240, A352248, A352283. %Y A352442 Cf. A352443, A352444, A352445. %K A352442 nonn %O A352442 1,1 %A A352442 _Wesley Ivan Hurt_, Mar 16 2022