This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352447 #22 Mar 25 2022 09:26:21 %S A352447 1,2,7,9,10,11,13,15,16,17,19,21,22,23,25,26,27,28,29,31,33,34,35,36, %T A352447 37,39,40,41,43,45,46,47,49,50,51,52,53,55,56,57,58,59,61,63,64,65,66, %U A352447 67,69,70,71,73,75,76,77,78,79,81,82,83,85,86,87,88,89,91,92,93,94,95 %N A352447 Numbers k such that BarnesG(k) is divisible by Gamma(k). %C A352447 These are k such that G(k)/Gamma(k) = 1!*2!*3!*...*(k-2)!/(k-1)! = 1!*2!*3!*...*(k-3)!/(k-1) are integer. Let k=1+c, so require 1!*2!*3!*...*(c-2)!/c to be integer. If c is composite, take any factorization of c=c_1*c_2 with 2<=c_1<=c_2<=c/2; then matching factors exist in the product 1!*2!*3!*...*(c-2)! that cancel this factor [either c_1! and c_2! if c_1 <> c_2, or c_1! and (c_1+1)! if c_1=c_2 and c-2 >= c_1+1]. If c is prime, none of the 1!*2!*..(c-2)! contains a factor matching that prime. So this shows that the sequence is (apart from offset and at c=4) the same as A079696. - _R. J. Mathar_, Mar 25 2022 %H A352447 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>. %H A352447 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Divisible.html">Divisible</a>. %H A352447 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>. %H A352447 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Superfactorial.html">Superfactorial</a>. %F A352447 Conjecture: a(n) = A079696(n-1), n>1. - _R. J. Mathar_, Mar 20 2022 %e A352447 BarnesG(7) = 34560, Gamma(7) = 720, 34560 is divisible by 720, so 7 is in this sequence. %t A352447 Table[If[Divisible[BarnesG[k], Gamma[k]], k, Nothing], {k, 115}] %o A352447 (Python) %o A352447 from itertools import count, islice %o A352447 from collections import Counter %o A352447 from sympy import factorint %o A352447 def A352447_gen(): # generator of terms %o A352447 yield 1 %o A352447 a = Counter() %o A352447 for k in count(2): %o A352447 b = Counter(factorint(k-1)) %o A352447 if all(b[p] <= a[p] for p in b): %o A352447 yield k %o A352447 a += b %o A352447 A352447_list = list(islice(A352447_gen(),100)) # _Chai Wah Wu_, Mar 17 2022 %Y A352447 Cf. A000142, A000178, A079696. %K A352447 nonn %O A352447 1,2 %A A352447 _Vladimir Reshetnikov_, Mar 16 2022