This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352460 #31 May 30 2022 19:36:36 %S A352460 1,1,1,2,1,1,2,2,1,1,4,3,2,1,1,5,4,3,2,1,1,9,6,5,3,2,1,1,13,10,6,5,3, %T A352460 2,1,1,23,15,10,7,5,3,2,1,1,35,24,14,10,7,5,3,2,1,1,61,39,23,14,11,7, %U A352460 5,3,2,1,1,98,63,34,21,14,11,7,5,3,2,1,1 %N A352460 Triangle read by rows: T(n,k), 2 <= k < n is the number of n-element k-ary unlabeled rooted trees where a subtree consisting of h + 1 nodes has exactly min{h,k} subtrees. %e A352460 Triangle begins: %e A352460 1; %e A352460 1, 1; %e A352460 2, 1, 1; %e A352460 2, 2, 1, 1; %e A352460 4, 3, 2, 1, 1; %e A352460 5, 4, 3, 2, 1, 1; %e A352460 9, 6, 5, 3, 2, 1, 1; %e A352460 13, 10, 6, 5, 3, 2, 1, 1; %e A352460 23, 15, 10, 7, 5, 3, 2, 1, 1; %e A352460 35, 24, 14, 10, 7, 5, 3, 2, 1, 1; %e A352460 61, 39, 23, 14, 11, 7, 5, 3, 2, 1, 1; %e A352460 98, 63, 34, 21, 14, 11, 7, 5, 3, 2, 1, 1; %e A352460 In particular, the rooted trees counted in the first three rows of the triangle are shown by using the Hasse diagram as follows: %e A352460 --------- %e A352460 o o %e A352460 \ / %e A352460 o %e A352460 ---------------------- %e A352460 o | %e A352460 | | %e A352460 o o | o o o %e A352460 \ / | \ | / %e A352460 o | o %e A352460 ------------------------------------------------------ %e A352460 o o o o | o | %e A352460 \ / | | | | | %e A352460 o o o o | o o o | o o o o %e A352460 \ / \ / | \ | / | \ \ / / %e A352460 o o | o | o %Y A352460 Cf. A000081, A000598, A001190, A292556, A299038. %K A352460 nonn,tabl %O A352460 3,4 %A A352460 _Salah Uddin Mohammad_, Mar 17 2022