cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352468 a(0) = 1; a(n) = Sum_{k=1..n} binomial(2*n,2*k)^3 * a(n-k).

This page as a plain text file.
%I A352468 #5 Mar 18 2022 00:12:49
%S A352468 1,1,217,735751,16225658905,1485378967457251,429009059656530602767,
%T A352468 324779065084721999818137709,563805297587600177760431368896025,
%U A352468 2028620600892240327820781003315525267467,13978450121866685445815888094629703793828769467
%N A352468 a(0) = 1; a(n) = Sum_{k=1..n} binomial(2*n,2*k)^3 * a(n-k).
%F A352468 Sum_{n>=0} a(n) * x^(2*n) / (2*n)!^3 = 1 / (1 - Sum_{n>=1} x^(2*n) / (2*n)!^3).
%t A352468 a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n, 2 k]^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 10}]
%t A352468 nmax = 20; Take[CoefficientList[Series[1/(1 - Sum[x^(2 k)/(2 k)!^3, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^3, {1,-1, 2}]
%Y A352468 Cf. A094088, A336195, A352467, A352471.
%K A352468 nonn
%O A352468 0,3
%A A352468 _Ilya Gutkovskiy_, Mar 17 2022