cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352471 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1)^3 * a(n-2*k-1).

This page as a plain text file.
%I A352471 #5 Mar 18 2022 00:13:27
%S A352471 1,1,8,217,13952,1752001,380168432,130996038265,67377689108480,
%T A352471 49343690620021249,49570079811804165008,66280482720537078211945,
%U A352471 115058150837606807142692096,253942526419333142443328522689,700015299612132412448976873339008
%N A352471 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1)^3 * a(n-2*k-1).
%F A352471 Sum_{n>=0} a(n) * x^n / n!^3 = 1 / (1 - Sum_{n>=0} x^(2*n+1) / (2*n+1)!^3).
%t A352471 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 2 k + 1]^3 a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 14}]
%t A352471 nmax = 14; CoefficientList[Series[1/(1 - Sum[x^(2 k + 1)/(2 k + 1)!^3, {k, 0, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^3
%Y A352471 Cf. A006154, A336195, A352468, A352470.
%K A352471 nonn
%O A352471 0,3
%A A352471 _Ilya Gutkovskiy_, Mar 17 2022