cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352477 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into 4 intersecting polygons.

This page as a plain text file.
%I A352477 #26 Apr 03 2022 08:54:02
%S A352477 15345,199914,1610700,10333050,57958005,297787980,1439757200,
%T A352477 6662364668,29844152321,130445708134,559533869356,2365296230374,
%U A352477 9885290683829,40944327268760,168389163026240,688631375953560,280357073972529,11373212442818370,46006062638648940
%N A352477 a(n) is the number of different ways to partition the set of vertices of a convex n-gon into 4 intersecting polygons.
%F A352477 a(n) = A261724(n) - A350286(n - 11), n > 11.
%e A352477 The set of vertices of a convex 14-gon can be partitioned into 4 polygons in 1611610 different ways:
%e A352477 - 3 triangles and 1 pentagon in (1/3!)*C(14,3)*C(11,3)*C(8,3)*C(5,5) = 560560 different ways, and
%e A352477 - 2 triangles and 2 quadrilaterals in (1/2!)*(1/2!)*C(14,3)*C(11,3)*C(8,4)*C(4,4) = 1051050 ways.
%e A352477 Subtracting the A350286(14-11)=910 nonintersecting partitions leaves a(14)=1610700.
%o A352477 (PARI) a4(n) = (1/12)*(-3^(n - 2)*(n^2 + 5*n + 18) + (1/64)*(2^(2*n + 5) + 3*2^n*(n^4 + 2*n^3 + 19*n^2 + 42*n + 64) - 16*(n^6 - 9*n^5 + 43*n^4 - 91*n^3 + 112*n^2 - 32*n + 8))); \\ A261724
%o A352477 a6(n) = (n*(n+1)*(n+2)*(n+9)*(n+10)*(n+11))/144; \\ A350286
%o A352477 a(n) = a4(n) - a6(n-11); \\ _Michel Marcus_, Mar 20 2022
%Y A352477 Cf. A261724, A350116, A350286.
%K A352477 nonn
%O A352477 12,1
%A A352477 _Janaka Rodrigo_, Mar 17 2022