This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352487 #18 Mar 25 2022 21:23:34 %S A352487 3,5,7,10,11,13,14,15,17,19,21,22,23,25,26,28,29,31,33,34,35,37,38,39, %T A352487 41,42,43,44,45,46,47,49,51,52,53,55,57,58,59,61,62,63,65,66,67,68,69, %U A352487 70,71,73,74,76,77,78,79,82,83,85,86,87,88,89,91,92,93,94 %N A352487 Excedance set of A122111. Numbers k < A122111(k), where A122111 represents partition conjugation using Heinz numbers. %C A352487 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than that of their conjugate. %H A352487 Alois P. Heinz, <a href="/A352487/b352487.txt">Table of n, a(n) for n = 1..10000</a> %H A352487 Richard Ehrenborg and Einar Steingrímsson, <a href="https://www.ms.uky.edu/~jrge/Papers/Excedance.pdf">The Excedance Set of a Permutation</a>, Advances in Applied Mathematics 24, (2000), 284-299. %H A352487 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>. %F A352487 a(n) < A122111(a(n)). %e A352487 The terms together with their prime indices begin: %e A352487 3: (2) %e A352487 5: (3) %e A352487 7: (4) %e A352487 10: (3,1) %e A352487 11: (5) %e A352487 13: (6) %e A352487 14: (4,1) %e A352487 15: (3,2) %e A352487 17: (7) %e A352487 19: (8) %e A352487 21: (4,2) %e A352487 22: (5,1) %e A352487 23: (9) %e A352487 25: (3,3) %e A352487 26: (6,1) %e A352487 28: (4,1,1) %e A352487 For example, the partition (4,1,1) has Heinz number 28 and its conjugate (3,1,1,1) has Heinz number 40, and 28 < 40, so 28 is in the sequence, and 40 is not. %t A352487 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A352487 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A352487 Select[Range[100],#<Times@@Prime/@conj[primeMS[#]]&] %Y A352487 These partitions are counted by A000701. %Y A352487 The weak version is A352489, counted by A046682. %Y A352487 The opposite version is A352490, weak A352488. %Y A352487 These are the positions of negative terms in A352491. %Y A352487 A000041 counts integer partitions, strict A000009. %Y A352487 A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116). %Y A352487 A003963 = product of prime indices, conjugate A329382. %Y A352487 A008292 is the triangle of Eulerian numbers (version without zeros). %Y A352487 A008480 counts permutations of prime indices, conjugate A321648. %Y A352487 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A352487 A122111 = partition conjugation using Heinz numbers, parts A321649/A321650. %Y A352487 A124010 gives prime signature, sorted A118914, length A001221, sum A001222. %Y A352487 A173018 counts permutations by excedances, weak A123125. %Y A352487 A238744 = partition conjugate of prime signature, ranked by A238745. %Y A352487 A330644 counts non-self-conjugate partitions, ranked by A352486. %Y A352487 A352521 counts compositions by subdiagonals, rank statistic A352514. %Y A352487 Cf. A000720, A114088, A120383, A175508, A290822, A304360, A316524, A319005, A325040. %K A352487 nonn %O A352487 1,1 %A A352487 _Gus Wiseman_, Mar 19 2022