This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352488 #12 Mar 25 2022 21:20:36 %S A352488 1,2,4,6,8,9,12,16,18,20,24,27,30,32,36,40,48,50,54,56,60,64,72,75,80, %T A352488 81,84,90,96,100,108,112,120,125,128,135,140,144,150,160,162,168,176, %U A352488 180,192,196,200,210,216,224,225,240,243,250,252,256,264,270,280 %N A352488 Weak nonexcedance set of A122111. Numbers k >= A122111(k), where A122111 represents partition conjugation using Heinz numbers. %C A352488 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than or equal to that of their conjugate. %H A352488 Alois P. Heinz, <a href="/A352488/b352488.txt">Table of n, a(n) for n = 1..2000</a> %H A352488 Richard Ehrenborg and Einar Steingrímsson, <a href="https://www.ms.uky.edu/~jrge/Papers/Excedance.pdf">The Excedance Set of a Permutation</a>, Advances in Applied Mathematics 24, (2000), 284-299. %H A352488 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>. %F A352488 a(n) >= A122111(a(n)). %e A352488 The terms together with their prime indices begin: %e A352488 1: () %e A352488 2: (1) %e A352488 4: (1,1) %e A352488 6: (2,1) %e A352488 8: (1,1,1) %e A352488 9: (2,2) %e A352488 12: (2,1,1) %e A352488 16: (1,1,1,1) %e A352488 18: (2,2,1) %e A352488 20: (3,1,1) %e A352488 24: (2,1,1,1) %e A352488 27: (2,2,2) %e A352488 30: (3,2,1) %e A352488 32: (1,1,1,1,1) %e A352488 36: (2,2,1,1) %e A352488 40: (3,1,1,1) %e A352488 48: (2,1,1,1,1) %e A352488 50: (3,3,1) %e A352488 54: (2,2,2,1) %e A352488 56: (4,1,1,1) %t A352488 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A352488 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A352488 Select[Range[100],#>=Times@@Prime/@conj[primeMS[#]]&] %Y A352488 These partitions are counted by A046682. %Y A352488 The opposite version is A352489, strong A352487. %Y A352488 The strong version is A352490, counted by A000701. %Y A352488 These are the positions of nonnegative terms in A352491. %Y A352488 A000041 counts integer partitions, strict A000009. %Y A352488 A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116). %Y A352488 A003963 = product of prime indices, conjugate A329382. %Y A352488 A008292 is the triangle of Eulerian numbers (version without zeros). %Y A352488 A008480 counts permutations of prime indices, conjugate A321648. %Y A352488 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A352488 A122111 = partition conjugation using Heinz numbers, parts A321649/A321650. %Y A352488 A124010 gives prime signature, sorted A118914, length A001221, sum A001222. %Y A352488 A173018 counts permutations by excedances, weak A123125. %Y A352488 A330644 counts non-self-conjugate partitions, ranked by A352486. %Y A352488 A352525 counts compositions by weak superdiagonals, rank statistic A352517. %Y A352488 Cf. A000720, A045931, A114088, A120383, A175508, A290822, A319005, A325040, A325698, A347450. %K A352488 nonn %O A352488 1,2 %A A352488 _Gus Wiseman_, Mar 20 2022