This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352489 #12 Mar 25 2022 21:27:34 %S A352489 1,2,3,5,6,7,9,10,11,13,14,15,17,19,20,21,22,23,25,26,28,29,30,31,33, %T A352489 34,35,37,38,39,41,42,43,44,45,46,47,49,51,52,53,55,56,57,58,59,61,62, %U A352489 63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83,84,85 %N A352489 Weak excedance set of A122111. Numbers k <= A122111(k), where A122111 represents partition conjugation using Heinz numbers. %C A352489 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than or equal to that of their conjugate. %H A352489 Alois P. Heinz, <a href="/A352489/b352489.txt">Table of n, a(n) for n = 1..10000</a> %H A352489 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>. %H A352489 Richard Ehrenborg and Einar Steingrímsson, <a href="https://www.ms.uky.edu/~jrge/Papers/Excedance.pdf">The Excedance Set of a Permutation</a>, Advances in Applied Mathematics 24, (2000), 284-299. %F A352489 a(n) <= A122111(a(n)). %e A352489 The terms together with their prime indices begin: %e A352489 1: () %e A352489 2: (1) %e A352489 3: (2) %e A352489 5: (3) %e A352489 6: (2,1) %e A352489 7: (4) %e A352489 9: (2,2) %e A352489 10: (3,1) %e A352489 11: (5) %e A352489 13: (6) %e A352489 14: (4,1) %e A352489 15: (3,2) %e A352489 17: (7) %e A352489 19: (8) %e A352489 20: (3,1,1) %e A352489 For example, the partition (3,2,2) has Heinz number 45 and its conjugate (3,3,1) has Heinz number 50, and 45 <= 50, so 45 is in the sequence, and 50 is not. %t A352489 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A352489 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A352489 Select[Range[100],#<=Times@@Prime/@conj[primeMS[#]]&] %Y A352489 These partitions are counted by A046682. %Y A352489 The strong version is A352487, counted by A000701. %Y A352489 The opposite version is A352488, strong A352490 %Y A352489 These are the positions of nonpositive terms in A352491. %Y A352489 A000041 counts integer partitions, strict A000009. %Y A352489 A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116). %Y A352489 A003963 = product of prime indices, conjugate A329382. %Y A352489 A008292 is the triangle of Eulerian numbers (version without zeros). %Y A352489 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A352489 A122111 = partition conjugation using Heinz numbers, parts A321649/A321650. %Y A352489 A124010 gives prime signature, sorted A118914, length A001221, sum A001222. %Y A352489 A173018 counts permutations by excedances, weak A123125. %Y A352489 A330644 counts non-self-conjugate partitions, ranked by A352486. %Y A352489 A352522 counts compositions by weak subdiagonals, rank statistic A352515. %Y A352489 Cf. A000720, A096276, A114088, A120383, A301987, A321648, A324850, A325040, A325044. %K A352489 nonn %O A352489 1,2 %A A352489 _Gus Wiseman_, Mar 20 2022