cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352492 Powerful numbers whose prime indices are all prime numbers.

This page as a plain text file.
%I A352492 #13 May 04 2022 03:34:23
%S A352492 1,9,25,27,81,121,125,225,243,289,625,675,729,961,1089,1125,1331,1681,
%T A352492 2025,2187,2601,3025,3125,3267,3375,3481,4489,4913,5625,6075,6561,
%U A352492 6889,7225,7803,8649,9801,10125,11881,11979,14641,15125,15129,15625,16129,16875
%N A352492 Powerful numbers whose prime indices are all prime numbers.
%C A352492 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%H A352492 Amiram Eldar, <a href="/A352492/b352492.txt">Table of n, a(n) for n = 1..10000</a>
%F A352492 Intersection of A001694 and A076610.
%F A352492 Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + 1/(p*(p-1))) = 1.24410463... - _Amiram Eldar_, May 04 2022
%e A352492 The terms together with their prime indices (not prime factors) begin:
%e A352492     1: {}
%e A352492     9: {2,2}
%e A352492    25: {3,3}
%e A352492    27: {2,2,2}
%e A352492    81: {2,2,2,2}
%e A352492   121: {5,5}
%e A352492   125: {3,3,3}
%e A352492   225: {2,2,3,3}
%e A352492   243: {2,2,2,2,2}
%e A352492   289: {7,7}
%e A352492   625: {3,3,3,3}
%e A352492   675: {2,2,2,3,3}
%e A352492   729: {2,2,2,2,2,2}
%e A352492   961: {11,11}
%e A352492 For example, 675 = prime(2)^3 prime(3)^2 = 3^3 * 5^2.
%t A352492 Select[Range[1000],#==1||And@@PrimeQ/@PrimePi/@First/@FactorInteger[#]&&Min@@Last/@FactorInteger[#]>1&]
%Y A352492 Powerful numbers are A001694, counted by A007690.
%Y A352492 The version for prime exponents instead of indices is A056166, counted by A055923.
%Y A352492 This is the powerful case of A076610 (products of A006450), counted by A000607.
%Y A352492 The partitions with these Heinz numbers are counted by A339218.
%Y A352492 A000040 lists primes.
%Y A352492 A031368 lists primes of odd index, products A066208.
%Y A352492 A101436 counts exponents in prime factorization that are themselves prime.
%Y A352492 A112798 lists prime indices, reverse A296150, sum A056239.
%Y A352492 A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
%Y A352492 A053810 lists all numbers p^q with p and q prime, counted by A230595.
%Y A352492 A257994 counts prime indices that are themselves prime, complement A330944.
%Y A352492 Cf. A000720, A000961, A001597, A007821, A007916, A052485, A109297, A140319, A164336, A181819, A325131, A330945, A346068.
%K A352492 nonn
%O A352492 1,2
%A A352492 _Gus Wiseman_, Mar 24 2022