This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352493 #10 Mar 31 2022 03:04:19 %S A352493 0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,3,0,1,4,5,3,1,3,5,7,3,5,6,8,8,11,7,6, %T A352493 8,15,14,14,10,15,17,21,18,23,20,28,25,31,27,35,32,33,37,46,41,50,45, %U A352493 58,56,63,59,78,69,76,81,85,80,103,107,111,114,127 %N A352493 Number of non-constant integer partitions of n into prime parts with prime multiplicities. %e A352493 The a(n) partitions for selected n (B = 11): %e A352493 n = 10 16 19 20 25 28 %e A352493 --------------------------------------------------------------- %e A352493 3322 5533 55333 7733 77722 BB33 %e A352493 55222 55522 77222 5533333 BB222 %e A352493 3322222 3333322 553322 5553322 775522 %e A352493 33322222 5522222 55333222 55533322 %e A352493 332222222 55522222 772222222 %e A352493 333333322 3322222222222 %e A352493 3333322222 %t A352493 Table[Length[Select[IntegerPartitions[n], !SameQ@@#&&And@@PrimeQ/@#&& And@@PrimeQ/@Length/@Split[#]&]],{n,0,30}] %Y A352493 Constant partitions are counted by A001221, ranked by A000961. %Y A352493 Non-constant partitions are counted by A144300, ranked A024619. %Y A352493 The constant version is A230595, ranked by A352519. %Y A352493 This is the non-constant case of A351982, ranked by A346068. %Y A352493 These partitions are ranked by A352518. %Y A352493 A000040 lists the primes. %Y A352493 A000607 counts partitions into primes, ranked by A076610. %Y A352493 A001597 lists perfect powers, complement A007916. %Y A352493 A038499 counts partitions of prime length. %Y A352493 A053810 lists primes to primes. %Y A352493 A055923 counts partitions with prime multiplicities, ranked by A056166. %Y A352493 A257994 counts prime indices that are themselves prime. %Y A352493 A339218 counts powerful partitions into prime parts, ranked by A352492. %Y A352493 Cf. A000005, A007690, A031368, A035444, A052485, A056239, A066208, A089723, A114639, A320628, A330945. %K A352493 nonn %O A352493 0,17 %A A352493 _Gus Wiseman_, Mar 24 2022