This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352499 #44 Apr 12 2023 09:23:31 %S A352499 1,2,3,4,5,6,6,7,0,8,0,9,9,10,0,11,0,12,12,13,0,14,0,15,15,15,16,0,0, %T A352499 17,0,0,18,18,0,19,0,0,20,0,20,21,21,0,22,0,0,23,0,0,24,24,0,25,0,25, %U A352499 26,0,0,27,27,0,28,0,0,28,29,0,0,0,30,30,30,0,31,0,0,0,32,0,0,0 %N A352499 Irregular triangle read by rows: T(n,k) is the sum of all parts of the partition of n into consecutive parts that contains 2*k-1 parts, and the first element of the column k is in row A000384(k). %C A352499 This triangle is formed from the odd-indexed columns of the triangle A285891. %H A352499 Paolo Xausa, <a href="/A352499/b352499.txt">Table of n, a(n) for n = 1..10490</a> (rows 1..800 of triangle, flattened). %F A352499 T(n,k) = n*A351824(n,k). %F A352499 T(n,k) = n*[(2*k-1)|n], where 1 <= k <= floor((sqrt(8*n+1)+1)/4) and [] is the Iverson bracket. - _Paolo Xausa_, Apr 12 2023 %e A352499 Triangle begins: %e A352499 1; %e A352499 2; %e A352499 3; %e A352499 4; %e A352499 5; %e A352499 6, 6; %e A352499 7, 0; %e A352499 8, 0; %e A352499 9, 9; %e A352499 10, 0; %e A352499 11, 0; %e A352499 12, 12; %e A352499 13, 0; %e A352499 14, 0; %e A352499 15, 15, 15; %e A352499 16, 0, 0; %e A352499 17, 0, 0; %e A352499 18, 18, 0; %e A352499 19, 0, 0; %e A352499 20, 0, 20; %e A352499 21, 21, 0; %e A352499 22, 0, 0; %e A352499 23, 0, 0; %e A352499 24, 24, 0; %e A352499 25, 0, 25; %e A352499 26, 0, 0; %e A352499 27, 27, 0; %e A352499 28, 0, 0, 28; %e A352499 ... %e A352499 For n = 21 the partitions of 21 into on odd number of consecutive parts are [21] and [8, 7, 6], so T(21,1) = 1 and T(21,2) = 8 + 7 + 6 = 21. There is no partition of 21 into five consecutive parts so T(21,3) = 0. %t A352499 A352499[rowmax_]:=Table[Boole[Divisible[n,2k-1]]n,{n,rowmax},{k,Floor[(Sqrt[8n+1]+1)/4]}];A352499[50] (* _Paolo Xausa_, Apr 12 2023 *) %Y A352499 Row sums give A352257. %Y A352499 Row n has A351846(n) terms. %Y A352499 The number of nonzero terms in row n equals A082647(n). %Y A352499 Cf. A000384, A237048, A245579, A285891, A299765, A351824, A352425. %K A352499 nonn,tabf %O A352499 1,2 %A A352499 _Omar E. Pol_, Mar 19 2022