This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352502 #108 May 01 2022 11:42:48 %S A352502 1,2,2,4,4,2,4,4,6,10,8,6,10,8,2,4,4,6,10,8,6,10,8,10,16,12,18,28,20, %T A352502 14,22,16,10,16,12,18,28,20,14,22,16,2,4,4,6,10,8,6,10,8,10,16,12,18, %U A352502 28,20,14,22,16,10,16,12,18,28,20,14,22,16,18,28,20,30 %N A352502 a(n) is the number of integers k in the interval 0..n such that k and n-k can be added without carries in balanced ternary. %C A352502 Two integers can be added without carries in balanced ternary if they have no equal nonzero digit at the same position. %C A352502 This sequence has connections with Gould's sequence (A001316); here we work with balanced ternary, there with binary. %H A352502 Rémy Sigrist, <a href="/A352502/b352502.txt">Table of n, a(n) for n = 0..6561</a> %H A352502 Wikipedia, <a href="https://en.wikipedia.org/wiki/Balanced_ternary">Balanced ternary</a> %F A352502 a(n) <= n+1 with equality iff n belongs to A140429. %F A352502 a(3*n) = 3*a(n) - 2. %F A352502 a(3*n+1) = a(3*n-1) + 2. %e A352502 For n = 8: %e A352502 - we consider the following cases: %e A352502 k| 0 1 2 3 4 5 6 7 8 %e A352502 ---------+--------------------------------------------- %e A352502 bter(k)| 0 1 1T 10 11 1TT 1T0 1T1 10T %e A352502 bter(8-k)| 10T 1T1 1T0 1TT 11 10 1T 1 0 %e A352502 carries?| no yes no no yes no no yes no %e A352502 - so a(8) = 6. %o A352502 (PARI) ok(u,v) = { while (u && v, my (uu=[0,+1,-1][1+u%3], vv=[0,+1,-1][1+v%3]); if (abs(uu+vv)>1, return (0)); u=(u-uu)/3; v=(v-vv)/3); return (1) } %o A352502 a(n) = sum(k=0, n, ok(n-k, k)) %Y A352502 Cf. A001316, A059095, A140429, A353174 (corresponding k's). %K A352502 nonn,base %O A352502 0,2 %A A352502 _Rémy Sigrist_, Apr 28 2022