A352503 Number of ways to write n as w^3 + 2*x^3 + 4*y^3 + 5*z^3 + t^6, where w is a positive integer, and x,y,z,t are nonnegative integers.
1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 3, 2, 1, 2, 4, 4, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 5, 3, 2, 1, 2, 2, 2, 3, 2, 2, 1, 2, 3, 4, 4, 1, 4, 5, 3, 6, 4, 5, 4, 5, 5, 3, 5, 3, 5, 1, 1, 1, 3, 6, 2, 3, 2, 4, 4, 3, 3, 2, 4, 2, 2, 3, 1, 3, 4, 5, 2, 5, 4
Offset: 1
Keywords
Examples
a(20) = 1 with 20 = 2^3 + 2*1^3 + 4*1^3 + 5*1^3 + 1^6. a(79) = 1 with 79 = 2^3 + 2*1^3 + 4*0^3 + 5*1^3 + 2^6. a(316) = 1 with 316 = 1^3 + 2*3^3 + 4*4^3 + 5*1^3 + 0^6. a(487) = 1 with 487 = 5^3 + 2*!^3 + 4*4^3 + 5*2^3 + 2^6. a(490) = 1 with 490 = 2^3 + 2*3^3 + 4*3^3 + 5*4^3 + 0^6. a(559) = 1 with 559 = 8^3 + 2*1^3 + 4*1^3 + 5*2^3 + 1^6.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no. 2, 97-120. (See Conjecture 3.4(i).)
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]; tab={};Do[r=0;Do[If[CQ[n-t^6-2x^3-4y^3-5z^3],r=r+1],{t,0,(n-1)^(1/6)},{x,0,((n-1-t^6)/2)^(1/3)},{y,0,((n-1-t^6-2x^3)/4)^(1/3)},{z,0,((n-1-t^6-2x^3-4y^3)/5)^(1/3)}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments