This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352507 #11 Apr 01 2022 11:38:04 %S A352507 0,1,3,6,8,15,22,43,48,53,59,64,69,133,152,171,177,196,215,430,444, %T A352507 458,477,491,505,524,538,552,564,578,592,611,625,639,658,672,686,1431, %U A352507 1487,1543,1568,1624,1680,1705,1761,1817,1862,1918,1974,1999,2055,2111,2136 %N A352507 Number whose representation in the base of Catalan numbers (A014418) is palindromic. %C A352507 The partial sums of the Catalan numbers with positive index (A014138) are terms, since the representation of A014138(n) is n 1's. %H A352507 Amiram Eldar, <a href="/A352507/b352507.txt">Table of n, a(n) for n = 1..10000</a> %e A352507 The first 10 terms are: %e A352507 n a(n) A014418(a(n)) %e A352507 -- ---- ------------- %e A352507 1 0 0 %e A352507 2 1 1 %e A352507 3 3 11 %e A352507 4 6 101 %e A352507 5 8 111 %e A352507 6 15 1001 %e A352507 7 22 1111 %e A352507 8 43 10001 %e A352507 9 48 10101 %e A352507 10 53 10201 %t A352507 c[n_] := c[n] = CatalanNumber[n]; q[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; PalindromeQ @ IntegerDigits[Total[4^(s - 1)], 4]]; Select[Range[0, 2000], q] %Y A352507 Cf. A000108, A014418. %Y A352507 Subsequences: A014138, A141351 \ {2}. %Y A352507 Similar sequences: A002113, A006995, A014190, A094202, A331191, A351712, A351717, A352087, A352105, A352319, A352341. %K A352507 nonn,base %O A352507 1,3 %A A352507 _Amiram Eldar_, Mar 19 2022