A352511 Starts of runs of 4 consecutive Catalan-Niven numbers (A352508).
144, 15630, 164862, 202761, 373788, 450189, 753183, 1403961, 1779105, 2588415, 2673774, 2814229, 2850880, 3009174, 3013722, 3045870, 3091023, 3702390, 3942519, 4042950, 4432128, 4725432, 4938348, 5718942, 5907312, 6268248, 6519615, 6592752, 6791379, 7095492, 8567802
Offset: 1
Examples
144 is a term since 144, 145, 146 and 147 are all divisible by the sum of the digits in their Catalan representation: k A014418(k) A014420(k) k/A014420(k) --- ---------- ---------- ------------ 144 100210 4 36 145 100211 5 29 146 101000 2 73 147 101001 3 49
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
c[n_] := c[n] = CatalanNumber[n]; catNivQ[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; seq[count_, nConsec_] := Module[{cn = catNivQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {catNivQ[k]}]; k++]; s]; seq[5, 4]
Comments