cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352511 Starts of runs of 4 consecutive Catalan-Niven numbers (A352508).

Original entry on oeis.org

144, 15630, 164862, 202761, 373788, 450189, 753183, 1403961, 1779105, 2588415, 2673774, 2814229, 2850880, 3009174, 3013722, 3045870, 3091023, 3702390, 3942519, 4042950, 4432128, 4725432, 4938348, 5718942, 5907312, 6268248, 6519615, 6592752, 6791379, 7095492, 8567802
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive Catalan-Niven numbers (checked up to 10^9).

Examples

			144 is a term since 144, 145, 146 and 147 are all divisible by the sum of the digits in their Catalan representation:
    k  A014418(k)  A014420(k)  k/A014420(k)
  ---  ----------  ----------  ------------
  144      100210           4            36
  145      100211           5            29
  146      101000           2            73
  147      101001           3            49
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; catNivQ[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; seq[count_, nConsec_] := Module[{cn = catNivQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {catNivQ[k]}]; k++]; s]; seq[5, 4]