This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352518 #21 Aug 04 2024 03:02:36 %S A352518 225,675,1089,1125,2601,3025,3267,3375,6075,7225,7803,8649,11979, %T A352518 15125,15129,24025,25947,27225,28125,29403,30375,31329,33275,34969, %U A352518 35937,36125,40401,42025,44217,45387,54675,62001,65025,70227,81675,84375,87025,93987 %N A352518 Numbers > 1 that are not a prime power and whose prime indices and exponents are all themselves prime numbers. %C A352518 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A352518 Amiram Eldar, <a href="/A352518/b352518.txt">Table of n, a(n) for n = 1..10000</a> %F A352518 Sum_{n>=1} 1/a(n) = (Product_{p prime-indexed prime} (1 + Sum_{q prime} 1/p^q)) - (Sum_{p prime-indexed prime} Sum_{q prime} 1/p^q) - 1 = 0.0106862606... . - _Amiram Eldar_, Aug 04 2024 %e A352518 The terms together with their prime indices (not factors) begin: %e A352518 225: {2,2,3,3} %e A352518 675: {2,2,2,3,3} %e A352518 1089: {2,2,5,5} %e A352518 1125: {2,2,3,3,3} %e A352518 2601: {2,2,7,7} %e A352518 3025: {3,3,5,5} %e A352518 3267: {2,2,2,5,5} %e A352518 3375: {2,2,2,3,3,3} %e A352518 6075: {2,2,2,2,2,3,3} %e A352518 7225: {3,3,7,7} %e A352518 7803: {2,2,2,7,7} %e A352518 8649: {2,2,11,11} %e A352518 11979: {2,2,5,5,5} %e A352518 15125: {3,3,3,5,5} %e A352518 15129: {2,2,13,13} %e A352518 24025: {3,3,11,11} %e A352518 25947: {2,2,2,11,11} %e A352518 27225: {2,2,3,3,5,5} %e A352518 28125: {2,2,3,3,3,3,3} %e A352518 For example, 7803 = prime(1)^3 prime(4)^2. %t A352518 Select[Range[10000],!PrimePowerQ[#]&& And@@PrimeQ/@PrimePi/@First/@FactorInteger[#]&& And@@PrimeQ/@Last/@FactorInteger[#]&] %Y A352518 These partitions are counted by A352493. %Y A352518 This is the restriction of A346068 to numbers that are not a prime power. %Y A352518 The prime-power version is A352519, counted by A230595. %Y A352518 A000040 lists the primes. %Y A352518 A000961 lists prime powers. %Y A352518 A001694 lists powerful numbers, counted by A007690. %Y A352518 A038499 counts partitions of prime length. %Y A352518 A053810 lists all numbers p^q for p and q prime, counted by A001221. %Y A352518 A056166 = prime exponents are all prime, counted by A055923. %Y A352518 A076610 = prime indices are all prime, counted by A000607, powerful A339218. %Y A352518 A109297 = same indices as exponents, counted by A114640. %Y A352518 A112798 lists prime indices, reverse A296150, sum A056239. %Y A352518 A124010 gives prime signature, sorted A118914, sum A001222. %Y A352518 A257994 counts prime indices that are themselves prime, nonprime A330944. %Y A352518 A325131 = disjoint indices from exponents, counted by A114639. %Y A352518 Cf. A000720, A001597, A002035, A007821, A007916, A101436, A117958, A164336, A268335, A330945. %K A352518 nonn %O A352518 1,1 %A A352518 _Gus Wiseman_, Mar 24 2022