A352519 Numbers of the form prime(p)^q where p and q are primes. Prime powers whose prime index and exponent are both prime.
9, 25, 27, 121, 125, 243, 289, 961, 1331, 1681, 2187, 3125, 3481, 4489, 4913, 6889, 11881, 16129, 24649, 29791, 32041, 36481, 44521, 58081, 68921, 76729, 78125, 80089, 109561, 124609, 134689, 160801, 161051, 177147, 185761, 205379, 212521, 259081, 299209
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 9: {2,2} 25: {3,3} 27: {2,2,2} 121: {5,5} 125: {3,3,3} 243: {2,2,2,2,2} 289: {7,7} 961: {11,11} 1331: {5,5,5} 1681: {13,13} 2187: {2,2,2,2,2,2,2} 3125: {3,3,3,3,3} 3481: {17,17} 4489: {19,19} 4913: {7,7,7} 6889: {23,23} 11881: {29,29} 16129: {31,31} 24649: {37,37} 29791: {11,11,11}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10^7: # for terms <= N M:=numtheory:-pi(numtheory:-pi(isqrt(N))): PP:= {seq(ithprime(ithprime(i)),i=1..M)}: R:= NULL: for p in PP do q:= 1: do q:= nextprime(q); t:= p^q; if t > N then break fi; R:= R, t; od; od: sort([R]); # Robert Israel, Dec 08 2022
-
Mathematica
Select[Range[10000],PrimePowerQ[#]&&MatchQ[FactorInteger[#],{{?(PrimeQ[PrimePi[#]]&),k?PrimeQ}}]&]
-
Python
from sympy import primepi, integer_nthroot, primerange def A352519(n): def f(x): return int(n+x-sum(primepi(primepi(integer_nthroot(x,p)[0])) for p in primerange(x.bit_length()))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024
Comments