cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352519 Numbers of the form prime(p)^q where p and q are primes. Prime powers whose prime index and exponent are both prime.

Original entry on oeis.org

9, 25, 27, 121, 125, 243, 289, 961, 1331, 1681, 2187, 3125, 3481, 4489, 4913, 6889, 11881, 16129, 24649, 29791, 32041, 36481, 44521, 58081, 68921, 76729, 78125, 80089, 109561, 124609, 134689, 160801, 161051, 177147, 185761, 205379, 212521, 259081, 299209
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

Alternatively, numbers of the form prime(prime(i))^prime(j) for some positive integers i, j.

Examples

			The terms together with their prime indices begin:
      9: {2,2}
     25: {3,3}
     27: {2,2,2}
    121: {5,5}
    125: {3,3,3}
    243: {2,2,2,2,2}
    289: {7,7}
    961: {11,11}
   1331: {5,5,5}
   1681: {13,13}
   2187: {2,2,2,2,2,2,2}
   3125: {3,3,3,3,3}
   3481: {17,17}
   4489: {19,19}
   4913: {7,7,7}
   6889: {23,23}
  11881: {29,29}
  16129: {31,31}
  24649: {37,37}
  29791: {11,11,11}
		

Crossrefs

Numbers of the form p^q for p and q prime are A053810, counted by A001221.
These partitions are counted by A230595.
This is the prime power case of A346068.
For numbers that are not a prime power we have A352518, counted by A352493.
A000040 lists the primes.
A000961 lists prime powers.
A001597 lists perfect powers.
A001694 lists powerful numbers, counted by A007690.
A056166 = prime exponents are all prime, counted by A055923.
A076610 = prime indices are all prime, counted by A000607, powerful A339218.
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A164336 lists all possible power-towers of prime numbers.
A257994 counts prime indices that are themselves prime, nonprime A330944.
A325131 = disjoint indices from exponents, counted by A114639.

Programs

  • Maple
    N:= 10^7: # for terms <= N
    M:=numtheory:-pi(numtheory:-pi(isqrt(N))):
    PP:= {seq(ithprime(ithprime(i)),i=1..M)}:
    R:= NULL:
    for p in PP do
      q:= 1:
      do
        q:= nextprime(q);
        t:= p^q;
        if t > N then break fi;
        R:= R, t;
      od;
    od:
    sort([R]); # Robert Israel, Dec 08 2022
  • Mathematica
    Select[Range[10000],PrimePowerQ[#]&&MatchQ[FactorInteger[#],{{?(PrimeQ[PrimePi[#]]&),k?PrimeQ}}]&]
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A352519(n):
        def f(x): return int(n+x-sum(primepi(primepi(integer_nthroot(x,p)[0])) for p in primerange(x.bit_length())))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024