cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352521 Triangle read by rows where T(n,k) is the number of integer compositions of n with k strong nonexcedances (parts below the diagonal).

This page as a plain text file.
%I A352521 #16 Jan 19 2023 22:35:35
%S A352521 1,1,0,1,1,0,2,1,1,0,3,2,2,1,0,4,5,3,3,1,0,6,8,7,6,4,1,0,9,12,15,12,
%T A352521 10,5,1,0,13,19,27,25,22,15,6,1,0,18,32,43,51,46,37,21,7,1,0,25,51,70,
%U A352521 94,94,83,58,28,8,1,0,35,77,117,162,184,176,141,86,36,9,1,0
%N A352521 Triangle read by rows where T(n,k) is the number of integer compositions of n with k strong nonexcedances (parts below the diagonal).
%H A352521 Andrew Howroyd, <a href="/A352521/b352521.txt">Table of n, a(n) for n = 0..1325</a>
%H A352521 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>.
%e A352521 Triangle begins:
%e A352521    1
%e A352521    1   0
%e A352521    1   1   0
%e A352521    2   1   1   0
%e A352521    3   2   2   1   0
%e A352521    4   5   3   3   1   0
%e A352521    6   8   7   6   4   1   0
%e A352521    9  12  15  12  10   5   1   0
%e A352521   13  19  27  25  22  15   6   1   0
%e A352521   18  32  43  51  46  37  21   7   1   0
%e A352521   25  51  70  94  94  83  58  28   8   1   0
%e A352521 For example, row n = 6 counts the following compositions (empty column indicated by dot):
%e A352521   (6)    (51)   (312)   (1113)   (11112)  (111111)  .
%e A352521   (15)   (114)  (411)   (1122)   (11121)
%e A352521   (24)   (132)  (1131)  (2112)   (11211)
%e A352521   (33)   (141)  (1212)  (2121)   (21111)
%e A352521   (42)   (213)  (1221)  (3111)
%e A352521   (123)  (222)  (1311)  (12111)
%e A352521          (231)  (2211)
%e A352521          (321)
%t A352521 pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
%t A352521 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pa[#]==k&]],{n,0,15},{k,0,n}]
%o A352521 (PARI) T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>i,x,1)*v[j-i])); r+=v); vector(#v, i, Vecrev(r[i], i))}
%o A352521 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 19 2023
%Y A352521 Row sums are A011782.
%Y A352521 The version for partitions is A114088.
%Y A352521 Row sums without the last term are A131577.
%Y A352521 The version for permutations is A173018.
%Y A352521 Column k = 0 is A219282.
%Y A352521 The corresponding rank statistic is A352514.
%Y A352521 The weak version is A352522, first column A238874, rank statistic A352515.
%Y A352521 The opposite version is A352524, first column A008930, rank stat A352516.
%Y A352521 The weak opposite version is A352525, first col A177510, rank stat A352517.
%Y A352521 A008292 is the triangle of Eulerian numbers (version without zeros).
%Y A352521 A238349 counts comps by fixed points, first col A238351, rank stat A352512.
%Y A352521 A352490 is the strong nonexcedance set of A122111.
%Y A352521 A352523 counts comps by nonfixed points, first A352520, rank stat A352513.
%Y A352521 Cf. A088218, A115994, A238352, A350839, A352487, A352491.
%K A352521 nonn,tabl
%O A352521 0,7
%A A352521 _Gus Wiseman_, Mar 22 2022
%E A352521 Terms a(66) and beyond from _Andrew Howroyd_, Jan 19 2023