This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352521 #16 Jan 19 2023 22:35:35 %S A352521 1,1,0,1,1,0,2,1,1,0,3,2,2,1,0,4,5,3,3,1,0,6,8,7,6,4,1,0,9,12,15,12, %T A352521 10,5,1,0,13,19,27,25,22,15,6,1,0,18,32,43,51,46,37,21,7,1,0,25,51,70, %U A352521 94,94,83,58,28,8,1,0,35,77,117,162,184,176,141,86,36,9,1,0 %N A352521 Triangle read by rows where T(n,k) is the number of integer compositions of n with k strong nonexcedances (parts below the diagonal). %H A352521 Andrew Howroyd, <a href="/A352521/b352521.txt">Table of n, a(n) for n = 0..1325</a> %H A352521 MathOverflow, <a href="https://mathoverflow.net/questions/359684/why-excedances-of-permutations">Why 'excedances' of permutations? [closed]</a>. %e A352521 Triangle begins: %e A352521 1 %e A352521 1 0 %e A352521 1 1 0 %e A352521 2 1 1 0 %e A352521 3 2 2 1 0 %e A352521 4 5 3 3 1 0 %e A352521 6 8 7 6 4 1 0 %e A352521 9 12 15 12 10 5 1 0 %e A352521 13 19 27 25 22 15 6 1 0 %e A352521 18 32 43 51 46 37 21 7 1 0 %e A352521 25 51 70 94 94 83 58 28 8 1 0 %e A352521 For example, row n = 6 counts the following compositions (empty column indicated by dot): %e A352521 (6) (51) (312) (1113) (11112) (111111) . %e A352521 (15) (114) (411) (1122) (11121) %e A352521 (24) (132) (1131) (2112) (11211) %e A352521 (33) (141) (1212) (2121) (21111) %e A352521 (42) (213) (1221) (3111) %e A352521 (123) (222) (1311) (12111) %e A352521 (231) (2211) %e A352521 (321) %t A352521 pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]]; %t A352521 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pa[#]==k&]],{n,0,15},{k,0,n}] %o A352521 (PARI) T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>i,x,1)*v[j-i])); r+=v); vector(#v, i, Vecrev(r[i], i))} %o A352521 { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ _Andrew Howroyd_, Jan 19 2023 %Y A352521 Row sums are A011782. %Y A352521 The version for partitions is A114088. %Y A352521 Row sums without the last term are A131577. %Y A352521 The version for permutations is A173018. %Y A352521 Column k = 0 is A219282. %Y A352521 The corresponding rank statistic is A352514. %Y A352521 The weak version is A352522, first column A238874, rank statistic A352515. %Y A352521 The opposite version is A352524, first column A008930, rank stat A352516. %Y A352521 The weak opposite version is A352525, first col A177510, rank stat A352517. %Y A352521 A008292 is the triangle of Eulerian numbers (version without zeros). %Y A352521 A238349 counts comps by fixed points, first col A238351, rank stat A352512. %Y A352521 A352490 is the strong nonexcedance set of A122111. %Y A352521 A352523 counts comps by nonfixed points, first A352520, rank stat A352513. %Y A352521 Cf. A088218, A115994, A238352, A350839, A352487, A352491. %K A352521 nonn,tabl %O A352521 0,7 %A A352521 _Gus Wiseman_, Mar 22 2022 %E A352521 Terms a(66) and beyond from _Andrew Howroyd_, Jan 19 2023